Usage of innovative repair techniques with the aim of avoidance of methane venting practices.

Implementation of innovative pipeline repair methods.

Oleksandr Pryshchepo "Ukrtransgaz"

Natalie Novakovskaya Main pipeline division "Cherkasytransgaz" affiliate company "Ukrtransgaz"
Figure 1 below shows the process of cutting the section with damage, which will be replaced by new pipe.

Figure 1: Cutting off the damaged pipeline section – still the predominant repair method in the beginning of 2000th
Figure 1 below shows the process of cutting the section with damage, which will be replaced by new pipe.

Figure 1: Cutting off the damaged pipeline section – still the predominant repair method in the beginning of 2000th
Figure 1 below shows the process of cutting the section with damage, which will be replaced by new pipe.
1- the gas pipeline under pressure; 2- leak; 3- folded sleeve (made of two separate halves); 4- supplementary pipe; 5- tap; 6- supplementary tap; 7- injector; 8- self-hardening filler.
Figure 3: Method of pipeline defect repair with the use of folded sleeve and tightening flanges, pat. # 72840

1-pipeline repaired; 2- folded sleeve; 3- lower tap; 4- upper tap; 5- hose; 6- flanges; 7- additional annular wage shaped gasket; 8- locking bolts; 13- high pressure injector; 14-self-hardening compound.
Figure 4: Method of pipeline defect repair with the use of two layer sleeve, pat. # 75859

1-pipeline, 2- damaged place, 3-rings, 4-sleeve, 5 and 6 – upper and lower taps
7-additional taps, 8-injector, 9- self-hardening compound with filler and 10 annular gaskets.
Figure 5: Application of two-layer sleeve

adjustment of the rings and sleeve
Figure 5: Application of two-layer sleeve

assembling of the sleeve (rings on place)
Figure 5: Application of two-layer sleeve

welding (a chain of several sleeves is shown which is covering multiple defects)
Figure 6: Double sleeve repair method, pat. #76390

1- Pipe repaired, 2- section with defect, 3 – inner sleeve, 4- rings, 5- reinforcing sleeve, 6- gastight self-hardening compound, 7- existing welding seam on repaired pipe, 8 – groove made on inner sleeve to accommodate the overhanging welding seam on the pipe surface.
Figure 7: Three layer sleeve repair method, pat #76391

1- pipe repaired, 2 and 3 – first layer of service rings, 4-second layer of rings, 5 – reinforcing folded sleeve, 6- tapping, 7 – corrugation, 8 – compound.
1-repaired pipe, 2- welding seam having leak, 3- clamp, 4- gasket, 5 and 6 flange and bolts, 7- supplementary rings, 8- secondary rings, 9- main sleeve, 10 – bolt, 11- annular gasket, 12- supplementary tap, 13 – self-hardening compound, 14 – circular clamps, 15- connectors, 16- axial weld.

Figure 8: Method of leaking section repair (pat.# 77930)
1- Body of the tap, 2- flange joint, 3 – pipeline, 4 – double-end-bolt, 5 – nut, 6 - inner space of stud joint, 7 – gaskets, 8- leaking gas.

Figure 9: Tap design and leakage occurrence.
Figure 10: Method of elimination of leakages through flanged joints of taps without stopping the operation of the pipeline, pat. # 42619.

1 - Body of the tap, 2 - flange, 3 - pipe, 6 - annular space around the bolt, 7 - gaskets, 9 - self-hardening compound, 11 – blind bore where thread is made for service tap, 12 – service tap, 13 – injection bore, 14 – injector.
The improvement consists of installing gasket 9 and shroud ring 8 before the injection which helps preventing the spill-out of compound injected. The other details are similar to the previous method.

Figure 11: Repair of flange joint with the use of clamps, pat.# 59013
The number of repairs made using innovative methods has been growing over the years as shown in a table above.

Table 1. Number of repairs made using innovative methods over years, 2011 and on - forecasted
Implementation of innovative joints repairs methods.

Thank you for your attention.