

Overview of Pipeline Pumpdown and Natural Gas STAR Partner Company, TransCanada Experience Jim Cormack

Agenda

- Background: Pipeline Pumpdown
- TransCanada Experience
 - Overview
 - Equipment Type and Process
 - Gas Savings and Fuel Consumption
 - Economics
- Summary

TransCanada Corporation (TSX/NYSE: TRP)

- Gas Pipelines
- 59,000 km wholly owned
- 7,800 km partially owned
- 250 Bcf of regulated natural gas storage capacity
- Average volume of 15 Bcf/d
- Oil Pipelines
- Keystone 1.1 million Bbl/d
- Expandable to 1.5 million Bbl/d
- Energy
- 19 power plants, 10,900 MW
- Diversified portfolio, primarily low-cost, base-load generation
- 120 Bcf of non-regulated natural gas storage capacity

Background: Pipeline Pumpdown

- Process in which gas is evacuated from a segment of pipeline about to undergo maintenance
 - Move gas to downstream in-service segment instead of blowing to atmosphere
- Most applicable to large pipelines operating at high pressures
- Use in-line compressors to pull down the pressure to minimum suction pressure
- Use portable compressor to pull down pressure further
- About 90 percent of gas previously vented is usually recoverable¹
- Cost is often justified by value of gas savings

Methane to Markets

Overview: TransCanada Experience

- TransCanada found pipeline pumpdown to be economical for larger volume, higher pressure gas lines and planned maintenance activities
- Gas savings justified the purchase and operation of 8 portable compressors by TransCanada
 - Currently the company is seeking to acquire more
- Additional fuel required by portable and inline compressors during pumpdowns is less than 1 percent of the total gas savings per pumpdown
- Gas saved competes with throughput capacity to create trade-offs

Dane to Markets Overview: TransCanada Experience

- TransCanada typically performs approximately 30 pipeline pumpdowns per year
 - Exact number depends on amount of maintenance work and new pipeline tie-ins needed
- Most pipeline pumpdowns currently performed on TransCanada's Canadian high pressure pipelines

Beginning to find some opportunities at U.S. lines

 Depending on a variety of factors, the company is able to mobilize its equipment fairly quickly, typically requiring only a couple weeks notice

TransCanada Experience: Equipment Type and Process

ane to Markets

- Currently the company owns 8 portable compressors
 - Mix of reciprocating and centrifugal units
 - Mix of 1 and 2 stage compression
 - Drivers range from 0.3 Megawatt (MW) to 4 MW
 - Mounted on road-ready trailers
- TransCanada rarely needs a third party to provide mobile compressor units

Equipment Type and Process

- A typical line for TransCanada is 106 centimeter (cm) diameter and 32 kilometers (km) to 48 km between block valves
- Most of its lines (constructed in the 1960s through 1990s) have maximum allowable operating pressure of 64.6 atmospheres (atm)
 - Line drawn down to 48.6 atm using inline compressors
 - Portable compressors used to pull the line pressure down to about 6.4 to 14.6 atm (dependent on portable compressor minimum suction pressure)

Equipment Type and Process

Equipment Type and Process

- Engineering calculations can estimate time required to conduct pipeline pumpdown. Variables:
 - Initial pressure of segment to be evacuated
 - Final pressure of evacuated segment
 - Discharge pressure of compressor
 - Compressor capacity curves
- Time required depends on capacity and minimum suction pressure of the specific compressor units
- For most of its large diameter pipelines, TransCanada found that pipe segment evacuations require approximately:
 - 2 hours for gas vented to atmosphere without pumpdown
 - 10 hours for pumpdowns, in-line and portable compressors plus minimal blowdown to atmosphere

Gas Savings Calculation

- Total evacuated gas volume
- Inline compr. incremental fuel gas
- Portable compr. fuel gas
- Total evacuated gas volume: volume of gas drawn down from pipeline segment and pumped into operating pipeline
- Inline compressor incremental fuel gas: incremental fuel necessary to handle evacuated gas
- Portable compressor fuel gas: fuel used by portable compressor to draw line down from 48.6 atm until suction lost
 - Portable compressor connections are potential costs of pumpdowns -TransCanada already has these in place

Total Evacuated Gas Volume

Evacuated gas volume

$$= \frac{\pi D^2 L}{4RT} (P_i - P_f) \times MV_{idea \lg as}$$

- D = TransCanada pipeline diameter, 106 cm
- L = Length of TransCanada pipeline segment, 32.18 km
- R = Gas constant
- T = Gas absolute temperature in pipeline segment, assumed 21.1°C
- $-P_i = TransCanada initial pipeline segment pressure, 62.2 atm$
- $P_f = TransCanada final pipeline segment pressure,$ **12 atm**
- MV_{idealgas} = molar volume of ideal gas (e.g. 22.4 Liters/mole)
- 1.40 million m³ total gas evacuated

°C = degrees Celsius

Portable Compressor Portion of Gas Evacuated

Volume evacuated

ane to Markets

$$= \frac{\pi D^2 L}{4RT} (P_i - P_f) \times MV_{idea \lg as} = 1,067,041 \text{ m}^3$$

- D = TransCanada pipeline diameter, 106 cm
- L = Length of TransCanada pipeline segment, 32.18 km
- R = Gas constant
- T = Gas absolute temperature in pipeline segment, assumed 21.1°C
- P_i = TransCanada initial pipeline segment pressure, 48.6 atm
- P_f = TransCanada final pipeline segment pressure, **12.4 atm**
- MV_{idealgas} = molar volume of ideal gas (e.g. 22.4 L/mole)
- 1.07 million m³ evacuated by portable compressor in 10 hours
 - 2.56 million m³ per day compression capacity
 - °C = degrees Celsius

Portable Compressor Fuel Gas

The fuel gas required for 2.56 million m³ capacity for 10 hours can be estimated by:

 $FG = \frac{1.28kW / thousand \ \text{m3}*2,560 \ thousand \ \text{m3}*10 \ hours*0.00341 \ MMBtu / \ kW - \ hr}{.036 \ MMBtu / \ m3*30\%}$

= 10,346 m³ additional fuel gas

=0.70% of total gas evacuated

Compressor efficiency assumed to be 30% Heat Content of Natural Gas assumed to be 1.02 MMBtu/Mcf

Inline Compressor Incremental Fuel Gas

- Additional inline capacity is required due to volume of gas injected by portable compressor evacuation
- At the same time, the capacity of the pipeline network is seriously constrained by having a portion of the line out of service
- Extra friction losses from the line being out of service often require considerable incremental inline compression horsepower

16

Outage Decision Model

TransCanada Experience: Economics

- Several variables affect the beneficial use of portable pumpdown compressors:
 - Additional fuel use from downstream compressors can be large
 - Fuel use by portable compressor
 - Extra manpower and maintenance issues
- TransCanada uses its "Outage Decision Model" to evaluate these variables and decide the economic feasibility of pumpdowns
- Other Considerations:

Methane to Markets

- The time variable is very important, especially if service disruptions are a potential from the line being out of service
- The extra fuel consumed by inline compression due to increased friction loss is usually the critical variable

TransCanada Experience: Economics Summary

 The costs and gas savings from TransCanada compressor pumpdowns are summarized below:

Equipment/ Practice	\$
Portable Compressor Fuel Gas used per Pumpdown	1,448
Inline Compressor Fuel Gas used per Pumpdown	442
Portable Compressor Capital Cost (69.05 atm, high flow)	3 to 6 million
Portable Compressor O&M Cost	5,000 to 30,000
Total Gas Evacuated	205,820
Labor and Transportation Cost	5,000 to 20,000
Total Natural Gas Savings	203,930

Cost of Natural Gas: \$0.14/m³

Source: Lessons Learned 2006

TransCanada Experience: Other Key Considerations

Methane to Markets

- TransCanada values its transit gas and fuel gas which influence pumpdown decisions
- TransCanada often has parallel lines, other operations may vary
- Running one line results in pumpdown fuel and higher fuel gas consumption at compressor stations
- Methane saved from pumpdowns will increase costs (increased fuel gas use, increased combustion emissions, portable compressor, labor) in other areas

Conclusion

ane to Markets

 TransCanada found that pipeline pumpdown is a technically and economically feasible activity to reduce methane emissions from high pressure pipelines

- Benefits justified purchase of 8 portable compressors

- Gas value saved per pumpdown: U.S.\$
 203,930 per pumpdown
- Total gas saved per year (assuming 30 example pumpdowns): U.S.\$ 6.1 million