Methane to Markets

Review of Directed Inspection and Maintenance: Techniques and Technologies for Leak Detection and Quantification.

Oil & Gas Subcommittee. Technology Transfer Workshop

January 27, 2009
Monterrey, Mexico
DI&M: Techniques and Technologies for Leak Detection and Quantification

- Leak Detection
- Importance of quantifying leaks
- Measurement parameters and performance requirements
- Measurement instrumentation
- Compressor seal vents
- Blowdown and vent/flare systems
- Storage tanks
- Final comments, questions
Leak Definition

- Excessive loss of process fluid past a seal, mechanical connection, cover or defect:
 - Most components have some losses.
 - Compressor and pump seals are usually designed to leak a certain amount to remove heat and debris away from contact surfaces.

- Typical regulatory leak definition:
 - Maximum allowable screening value (e.g., 10 000 ppm).
Noteworthy Leak Trends

- Most of the emissions are from a few big leaks:
 - Typically, 5 to 10 percent of the leaks contribute >80% of the leakage.
- Most likely sources of big leaks:
 - Compressor seals.
 - Open-ended lines and blowdown systems.
 - Pressure relief valves.
 - Pressure-vacuum safety valves.
 - Tank hatches.
- Least likely sources of big leaks:
 - Valve stem packing systems.
 - Connectors.
- Components in odorized or H₂S service leak less than those in non-odorized or non-toxic service.
- Components in thermal cycling, vibration or cryogenic service have increased leakage.
Leak Detection – General Requirements

- Minimum detectable leak rate less than or equal to leak definition.
- Quantitative results.
- Rated for use in hazardous locations.
- Portable and easy to use.
- Rugged and weather resistant.
- Suitable for indoor and outdoor use.
- Fast responding real time output.
- Resistant to interferences.
- Cost-effective.
Leak Detection Options

Organic vapour analyzers

Bubble tests

Ultra-sonic leak detection
Leak Detection Options

Optical Techniques

- Visual image of open-ended drain
- Infrared image from gas imaging device of open-end drain
Leak Detection – Bubble Test

• Inexpensive.
• Several times faster than gas sensors.
• Can’t be used on hot components.
• Cannot distinguish between natural gas, air and other gas leaks.
• Provides semi-quantitative results.
• Add anti-freeze agents in cold weather (windshield washer fluid).
Leak Detection – Portable Gas Sensors

- Well recognized and accepted approach (US EPA Method 21).
- Moderately priced ($1000+).
- Responds differently to different substances.
- Susceptible to fouling and deactivation.
- Some can be heavy and awkward to use.
- Readings affected by wind.
- Not rated for use in freezing weather.
Leak Detection – Ultrasonic Leak Detectors

- Able to screen elevated or difficult to access components.
- Moderate cost ($5000+)
- Generally much faster than Method 21.
- Less sensitive than Method 21.
- Does not distinguish between natural gas, air and other types of gas leaks.
- Limited to use in areas with low background noise in the ultrasonic range.
Leak Detection – IR Cameras (Thermography)

- Fast and easy to use.
- Easy to check elevated or difficult to access components.
- Provides real-time leak imaging - very effective in communicating leak results.
- Generally less sensitive than a hand held gas sensor but able to more quickly zero in on the major leaks.
Leak Detection – IR Cameras (Concluded)

- Sees methane, VOCs, CO$_2$ and steam.
- Expensive ($70,000$ to $120,000$ US).
- Works best in bright sunlight and warm environments.
- Not effective during rain, snow, sleet, drizzle or fog.
Why Quantify Emission Rates?

- Justification for repair/control costs.
- Prioritization and optimization of efforts?
- Objective performance monitoring.
- Potential to generate marketable GHG credits and value avoided gas losses.
Key Measurement Parameters:

- Temperature
- Pressure
- CH₄ Concentration
- Volumetric Flow
Performance Requirements:

- Practical and safe to use in the field.
- Reasonable cost.
- Readily available.
- Sufficient accuracy for economic evaluations (e.g., ±25% or better).
- Greater accuracy for carbon credit projects (e.g., ±15% or better).
Sources of Methane Emissions
Measurements at the Source

- **Typical Applications:**
 - Equipment leaks, venting and flaring.

- **Basic constraints:**
 - Requires easy or supplied access to source.

- **Potential Issues:**
 - Safety concerns (H2S or relief events).
 - Backpressure limitations.
 - High or cold temperature surfaces.
 - Fouling (e.g., condensing vapor or lube oil mist).

Source: Clearstone Engineering, 2002
Measurements at the Source:

- **Methods:**
 - **Bagging**
 - Time consuming and costly to apply.
 - Applicable for small to moderate leak rates.
 - **Hi-Flow Sampler**
 - Convenient approach for smaller to medium sized leaks (e.g., 8 to 10 scfm or $25,200 to $31,500/y at $6/mscf).
 - **End-of-Pipe Capture & Measurement Techniques**
 - Calibrated Bag
 - Full-flow flow meters.
 - Velocity Traverses
 - **Inline Measurements**
 - Velocity Traverses
 - Tracer Techniques
VACUUM METHOD

BLOW-THROUGH METHOD
HiFlow Sampler

- Leaking Valve Stem
- Air Flow
- Instrument
Compressor Seal Vents:

- **Causes of Emissions:**
 - Seal wear.

- **Typical Measurement Problems:**
 - Potentially multiple leakage points:
 - Centrifugal:
 - Lube oil degassing reservoir.
 - Seal Vent.
 - Reciprocating compressors:
 - Distance piece and packing case vents.
 - Lube oil drain tank vent.
 - Crank case vent.
 - Potentially large flows.
 - Minimal tolerance to any back-pressure.
 - Fouling due to lube oil mist.
Compressor Seal Vents:

- **Typical Measurement Problems:**
 - Oily roof-tops and limited roof-top access.
 - Lack of ports on vent lines.
 - Possibly weather caps on vent outlets.

- **Measurement Approaches.**
 - Vane anemometers.
 - Diaphragm meters or calibrated bags where some backpressure can be tolerated.
 - Hi-Flow Sampler
 - Quantitative remote sensing methods.
 - Permanent Solutions:
 - Flow switches.
 - Rotameters.
Blowdown and Vent/Flare Systems:

- Causes of Emissions (During Passive Periods):
 - Purge gas.
 - Leakage past the seats of blowdown/relief valves (5 to 10% leak and 1 to 2% of these contribute over 75% of the emissions).
 - Blowdown or drain valves not fully closed.
 - Compressor seals.

- Typical Measurement Problems:
 - Potentially large flows.
 - Difficulty accessing end of pipe.
 - Limited or no suitable ports for insertion of velocity probes.
Blowdown and Vent/Flare Systems:

- Typical Measurement Problems:
 - Low flow velocities.
 - Potentially wet or fouling environment inside pipe.
 - Safety concerns (relief episodes).

- Measurement Approaches.
 - Micro-tip vane and thermal dispersion anemometers.
 - In-line tracer tests.
 - Ultrasonic sensors (portable & online).
 - Remote sensing methods.

- Permanent Solutions:
 - Ultrasonic transit-time flow meters.
 - Flow switches.
Storage Tanks:

- Causes of Emissions:
 - Working and breathing losses.
 - Flashing losses.
 - Unaccounted for contributions:
 - Unintentional Gas carry-through.
 - Leaking drain and dump valves.
 - Malfunctioning level controllers.
 - Inefficient upstream gas/liquid separation.
 - Piping changes resulting in storage of unstablized product.
 - Non-routine storage of unstabilized product in atmospheric tanks.
 - Malfunctioning vapor recovery systems:
 - Faulty blanket gas regulators or pressure controllers.
 - Fouled vapor collection lines.
 - Leaking roof fittings and seals.
Storage Tanks:

- **Typical Measurement Problems:**
 - Multiple roof openings.
 - Edge-of-roof access only.
 - Dependence on pump in/out activity and meteorological conditions.
 - Fall protection and potentially confined space training required.
 - Interpretation and extrapolation of results.

- **Measurement Approaches:**
 - Velocity profiles across openings.
 - Vane anemometers.
 - Tracer techniques.
 - DIAL

- **Engineering Calculations**
 - API E & P TANKS Model (Flashing, working and breathing losses).
Partner Experience - PEMEX

- Leak surveys implemented as part of PEMEX collaboration agreement with EPA from 2006 to date.
- Surveyed more than 3,000 components in random chosen sections at 3 major gas processing facilities in Southern Mexico using sniffers, FLIR camera and Hi-Flow Sampler.
- Identified leaking rates as high as 2.2 MMcf/year from single components.
- Annual methane emissions reduction potential of 200 MMcf/year.
- At US$ 5 / Mcf, potential gas savings worth would be US$ 1,000,000 / year.
- PEMEX is implementing DI&M program.

Source: M2M
Planned Field Trip:

- View a leak in real time through the view screen of an IR camera.
- Screen the leak using traditional methods:
 - Handheld gas sensor
 - Soap test
- Quantify volume of emission using Hi-Flow Sampler