METHANE TO MARKETS PARTNERSHIP

CHALLENGES AND OPPORTUNITIES

by Giuseppe IORIO Eni – GHG Manager ITALY

TOMSK - September 13-14, 2005

NATURAL GAS

STRENGTHS

WEAKNESSES

Abundant reserves

Mild environmental footprint

Lowest carbon intensity among fossil sources

High end use efficiency

Clean and very efficient Power Generation

Preferred source of hydrogen

Complex and capital-intensive infrastructures

Market rigidity: fixed link to the final market

Lengthy negotiation between the parties involved

Substantial volumes of stranded gas

Under-explored energy source

Flaring of remote associated gas

the NG reserve/production ratio is higher than crude oil

THE RATE OF NG RESERVES UTILIZATION IS LOWER THAN OIL

NG's R/P ratio is almost twice the oil ratio

Reducing this ratio contributes to stabilize hydrocarbon supply

2005 WORLD GAS RESERVES (Gm³)

CO₂ EMISSION FACTORS

	Heat	PG		
	tCO ₂ /toe	tCO ₂ /MWh		
Natural gas	2,35	0,36		
Oil	3,15	0,65		
Coal	3,96	1,00		

The internalisation of the environmental cost of CO₂ may substantially increase the total cost of the primary energy and change the competition among fuels, conversion technologies and final uses. The internalisation of the CO₂ emissions depends on the CO₂ emission factors.

Natural gas, being less carbon intensive, is favoured.

ROADMAP TOWARDS A MORE DECARBONISED ENERGY SYSTEM

New infrastructures for existing and new markets

Mobilize stranded gas

Expand NG use for power generation

"Zero" Gas Flaring

Reduce GHG emissions from NG infrastructures

CO₂ geological Sequestration

Long distance, high pressure pipelines LNG chain

LNG Gas to Liquids

High efficiency combined cycle

Power generation for local uses; GtL

High efficiency turbo-compressors; leak detection

Sequestrate CO₂ available in gas centers, from decarbonisation units

ROUTE MAP OF THE GAS PIPELINE TURKMENISTAN - EUROPE Feasibility study of HP pipeline

COMPARISON BETWEEN HP AND LP FOR 15 - 30 GSM³/Y NET TRANSPORT CAPACITY

	I5 Gm³/y		30 Gm ³ /y		
	НР	LP	HP	LP	
Suction Pressure, MPa	10	4.5	10	4.	5
Discharge Pressure, MPa	14	7.5	14	7.	5
Pipe Steel (API 5L Spec.)	X-80	X-70	X- 80	X-70	
Nominal Diameter, inch	42	56	56	56	72
Max. Wall Thickness, mm	24	19	32	19	25
Pipe Weight, kg/m	530	582	941	582	961
Stations Distance, km	406	650	447	166	598
Adsorbed Power per Station,MW	20	34	40	68	68
Fuel, GSm ³ /y/1000 km	0.10	0.11	0.18	0.83	0.23

ECONOMIC COMPARISON BETWEEN HP AND LP PIPELINES

LIBYA - ITALY PIPELINE

TOWARDS ZERO GAS FLARING

KWALE (NIGERIA) ENERGY PROJECT

NIGERIA – POWER GENERATION

CO₂ GEOLOGICAL SEQUESTRATION

THE OUTLOOK FOR CO₂ GEOLOGICAL SEQUESTRATION (Acceptable CO₂ avoided cost = 40 \$/tCO₂)

Quite a different meaning for different PG units								
kgCO ₂ /kwh								
NG Combined Cycle	0.4	1.6 cent/kWh (40,0 \$/tCO ₂)						
Oil fired PG	0.6	2.4 cent/kWh (26.6 \$/tCO ₂)						
Pulverized Coal	1.0	4.0 cent/kWh (16.0 \$/tCO ₂)						
Similar results for heat or H ₂ production								

The cost goal of the tCO₂ avoided is much higher for NG and therefore it is necessary to aim for CCS in NG units.

CO₂ from deacidification of NG in gas centers provide early opportunities for CCS.

Reduction of energy consumption and GHG emissions

- To curb energy consumption and GHG emissions, targeted energy saving programmes are possible using the best available technology, with the installation of high-efficiency turbines including aeroderivative turbines with an energy efficiency of 37%.
- Natural gas consumption at the compressor stations can be controlled and optimised by the Dispatching Centre with specific software programs. These programs make it possible to determine the best efficiency point for each station and the best operating conditions for the transport lines.

ROLE OF NATURAL GAS

Natural Gas is the bridge towards a more decarbonised energy system.

- 1 Switching to low-carbon fuels
- 2 **Power generation with CO₂ sequestration**
- 3 Source of H₂ as an energy carrier

The Italian contribution in fulfilling an expanded role of NG

In Italy NG plays a major role in the energy supply.

The Italian industry has pioneered and continues to develop advanced technologies in all segments of the NG chain

- onshore and offshore pipelines (Transmed, Bluestream, Greenstream,..)
- LNG and regasification
- geological gas storage
- Gas to Liquids (Methanol, DME, Fischer-Tropsch synthesis)
- Advanced combined cycle Power Generation

This gas technology portfolio can contribute to bring new international gas initiatives to fruition.

