Avoiding climate-damaging methane emissions during pipeline repairs

Krakow, October 14th, 2011
Christian Hadick (Pipeline Intervention) and Axel Scherello
Reduction of natural gas emissions

Reduction of natural gas emissions during maintenance work on pipelines / at field stations
Climate protection

Methane
- 21 to 25 times higher impact on global warming, measured in terms of CO$_2$ (t/100a)

- 2nd most important anthropogenic greenhouse gas, Global Warming Potential (GWP)
 Value: 21 - 25

Voluntary commitment by E.ON AG on climate protection
- (Corporate responsibility in environmental management)

- No requirements imposed anywhere in Europe (but voluntary commitments by gas suppliers)
- Evaluation of methane emissions (no CH4 emission allowance trading)
Natural gas emissions

Open Grid Europe experience

- 5 scheduled venting operations on the transmission pipeline system p.a. correspond to approx. 3 million m³ of natural gas (2.2 kt of CH₄) which equates to the annual gas consumption of some 1,500 households

Comparison

- Global anthropogenic methane emissions by source (in %)

 - Production, transportation and distribution of natural gas: 30%
 - Wet rice cultivation: 12%
 - Farmyard manure: 11%
 - Ruminants (enteric fermentation): 10%
 - Others: 9%
 - Coal mining: 6%
 - Wastewater: 4%
 - Landfill sites: 18%
Approaches to technical solutions

Use of stoppling method to reduce length of isolated pipeline section

Use of mobile compressor to transfer the gas
Technologies available at Open Grid Europe

<table>
<thead>
<tr>
<th>Stoppling</th>
<th>Mobile compressor / Status today</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>- Equipment rated up to 100 bar (MOP) available at Open Grid Europe</td>
<td>- Equipment available at Open Grid Europe</td>
</tr>
<tr>
<td>- Vented gas volumes are reduced to a minimum</td>
<td>- Low venting losses</td>
</tr>
<tr>
<td>- Natural gas transmission is not interrupted</td>
<td>- Use of natural gas not vented allows cost savings</td>
</tr>
<tr>
<td>- costly</td>
<td>- Technology available for use at short notice</td>
</tr>
</tbody>
</table>
mobile compressor - reduction of natural gas emissions and losses

- Repair work on natural gas pipelines requires the lines to be depressurised down to atmospheric pressure, particularly when they have to be isolated. Using a mobile compressor allows the gas to be transferred from the isolated section into other pipelines or pipeline sections.

 ➔ Pipeline evacuated down to minimum residual pressures (6 bar)
 ➔ Methane emissions reduced by up to 90%
 ➔ Use of natural gas not vented to atmosphere
 ➔ High environmental protection effect

Example:
- An 18 km DN 1000 (40“) pipeline section operated at 70 bar contains some 1 million Nm³ of natural gas.
Mobile compressor - Natural gas savings per project

![Graph showing natural gas savings per project for different pipeline configurations.

- DN1400 (56") / 25km / 5.0 bar
- DN1400 (56") / 25km / 7.5 bar
- DN1000 (40") / 25km / 5.0 bar
- DN1000 (40") / 25km / 7.5 bar
- DN800 (32") / 20km / 5.0 bar
- DN800 (32") / 20km / 7.5 bar

The x-axis represents pipeline pressure [bar], and the y-axis represents natural gas not vented [TNm³].]
OGE requirements for mobile compressor

Compressor
- Max. capacity, shortest possible transfer time

Energy source
- Natural gas (autonomous unit)

Safety
- Built according to applicable European and German codes and standards
- Discharge pressure protection (can be adjusted as required in line with MOP of pipeline)
- Discharge temperature protection
- Gas warning sensor
- Fire extinguishing system (Inergen)
Mobile compressors – Technical data

Mobile (road-approved) natural gas transfer system

- **Vehicle:** Mercedes MB-1848 LS, 350 kW
- **Dimensions:** Length: 13.5 m; Width 2.55 m; Height: 4.0 m
- **Weight:** less than 40 t
Mobile compressor built in cooperation with LMF

- LMF, the vendor retained by OGE, was willing to face up to the project’s ambitious targets (maximum capacity, minimum weight and minimum evacuation time).

- The unit had the usual teething problems typical of prototypes. Thanks to decades of experience in gas engineering, these problems were resolved and the compressor made available for field use.

- The project has provided the most efficient mobile compressor unit currently available in Europe.
Mobile compressor – Technical details

Compressor

- Reciprocating compressor (LMF BS 604), two-stage, double-acting, 4x130mm
 - 640 kW (max.)
 - 2,200 – 61,000 Nm³/h (dependent on pressure ratio)
- Suction pressure: 69 to 5 barg,
- Max. discharge pressure: 70 barg

Drive

- Gas engine (CAT G3512LE)
 - 750 kW (max.) at 1,400 rpm
 - Average fuel consumption: 150 Nm³/h (250 Nm³/h max.)
Mobile compressor

- Air filter (CAT)
- Exhaust silencer
- Gas inlet filter
- Gas outlet
- Gas engine
- Fuel gas control run
- Reciprocating compressor
- Gas inlet
Installation

- Can be used to connect two different pipelines
- Can be installed on one pipeline as shown in the schematic
- Connecting fittings are retrofitted e.g. by hot tapping
- Min. diameter of connecting piece is 100 mm
- Adapters are available for different connecting pieces
Mobile compressor
Typical evacuation process

Pipeline Pressure [barg]

Time [min]

evacuation starts at 50 barg
pipeline section 20km, diameter DN1000
7 barg reached after 45 h
Installation

Schematic

- suction line
- discharge line
- mobile line
- transmission line
- engine
- pd: 55 barg
- ps: 50-5 barg

Open Grid Europe
The Gas Wheel
Reference projects in 2010

- Three projects on OGE pipeline system
 - Natural gas volume transferred: approx. 1.5 million m³
 - Avoided CO2 equivalent: approx. 25,000 t
 - Value of natural gas not vented to atmosphere: € 330,000
Reference projects in 2011

- Four projects on OGE pipeline system
- One project each on Bayernets and GRTgaz systems
- Natural gas volume transferred: approx. 8.5 million m³
- Avoided CO2 equivalent: approx. 145,000 t
- Value of natural gas not vented to atmosphere: € 1,870,000
I am pleased to answer your questions or contact christian.hadick@open-grid-europe.com