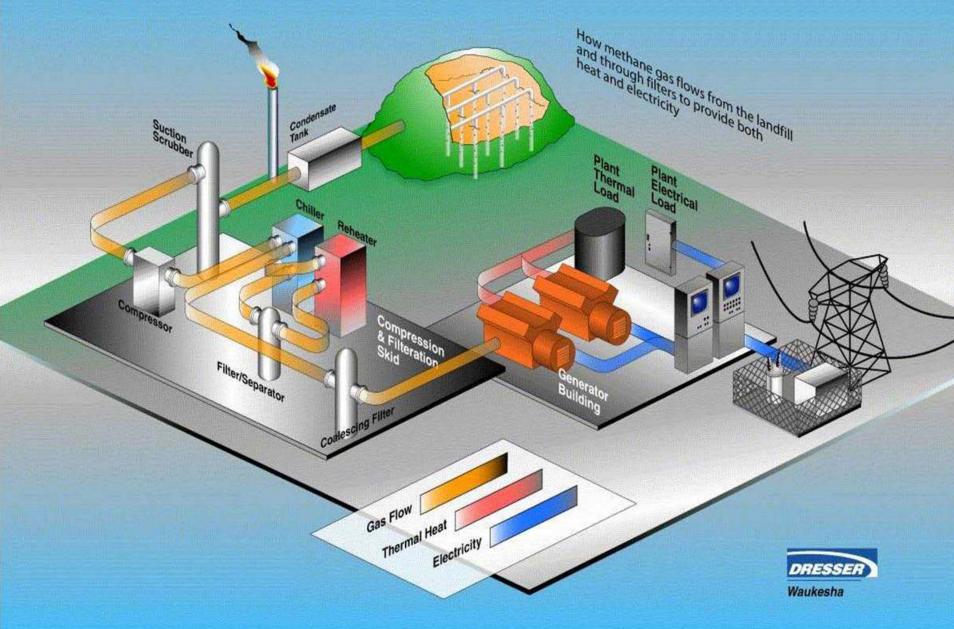
Biogas Technology Applications Novi Sad ISWA Beacon Workshop 9 November 2010

Adrian Loening

Carbon Trade Ltd. (a contractor to US EPA)



Why Use Biogas (LFG)?

- Local, available fuel source
- Easy to capture and use
- Source of renewable energy
- Constant supply 24 hours a day, 7 days a week
- Reliable technologies exist for using landfill gas - >90% up time
- Uses a source of energy that otherwise would have been wasted
- Helps the global environment by reducing uncontrolled emissions.

Landfill Gas to Energy

LFGE Project Benefits

- Destroys methane and other organic compounds in LFG
- Offsets use of non-renewable resources
- Each 1 MW of generation capacity:
 - Annual environmental equivalent to planting 4,900 hectare of trees or removing the CO_2 emissions of 9,000 cars, or powering more than 650 homes.

Possible Uses

- Direct Use
- Combined Heat and Power
- Electricity Production
- Alternate Fuels

Landfill Gas has been used to help produce...?

- Flowers and tomatoes
- Pottery and glass
- Cars and trucks
- Pharmaceuticals
- Bricks and concrete
- Steel
- Orange and apple juice
- Snack food
- Biodiesel and ethanol
- Consumer goods and containers
- Fiberglass, nylon and paper
- Denim

- Electronics
- Chemicals
- Chocolate
- Dried wastewater sludge
- Soy-based products
- Carpet
- Infrared heat
- Green power
- Cost savings
- Increased sustainability

Direct Gas Utilization

- Community-Based End-Uses
 - Improve life in local communities
 - Reduce odors
 - Offset fuel costs
 - Examples include:
 - LFG used to fuel boilers to heat schools or hospitals
 - Waste heat from engines heat greenhouses or aquaculture installations
 - Leachate evaporation to reduce leachate treatment and hauling costs
 - Pyrolisis furnace

Direct Gas Utilization

- Boilers
- Direct thermal applications kilns, furnaces
- Innovative applications
 - Greenhouses
 - Infrared heaters
 - Pottery kilns
 - Leachate evaporation
 - Medical waste Incinerators and autoclave

Direct Gas Utilization

- Gas piped to a nearby customer for use in boiler, kiln or other process
- 120 projects in the US
- Around 20 projects in the EU
- Pipeline length range from 0.6 to 15 kilometers
 - -less than 5 kilometers is most feasible
- Gas used at off-site end user

Direct Use Applications

Greenhouses

- Use both electricity and heat.
- Carbon dioxide can be used to grow greenhouse plants.
- 6 operational greenhouse projects in the U.S.

Infra-red Heating

- Infrared Heating Technology
 - Consume 4 50 m³/hr
 - Benefit local government services by providing comfort heating for landfill workers and offset fossil fuel use
 - Minimal gas well drilling
 - On-site use requiring short pipeline distance and minimal gas compression
 - Limited clean-up of landfill gas
 - Condensate trap often only treatment needed

Infra-red Heating Case Study: Escobar, Argentina

- Grantee: Argentina's Solid Waste Association (ARS)
- 2007 Grant for \$125,000 from US EPA
- Three extraction wells connected to small 7.5 hp blower and solar flare
- Began operation September 2009
- Infrared heater can operate on as little as 4 m³/hr

Pyrolysis Case Study: Olavarría, Argentina

- Grantee: National University of the Central Province of Buenos Aires
- 2008 Grant combined with funds from municipality of Olavarría
- LFG used to fuel furnace to combust medical waste
- Furnace moved from city center to the outskirts of town, reducing waste combustion-derived emissions in the concentrated urban center
- Phase 1 completed January 2010: 35 m³/hr extraction rate
- Phase 2: additional wells will increase gas flow to 50 m³/hr

Electricity Generation

- Most prevalent type of project in the US
 - In US, 1,650 MW of capacity from over 385 operational projects
 - In UK, nearly 1000MW, over 450 projects, 1/3rd of UK's renewable energy
- Electricity sold to utility, cooperative or nearby customer
- Typical project size: 4 MW

Electricity Generation

Internal Combustion Engines

Turbines

Microturbines

Internal Combustion Engine

Sizing

- -50kW to 3 MWs
- Typically 1MW Units
- Proven and reliable

Electricity Generation Site Use

- Lviv, Alushta & Yalta, Ukraine
- Small natural gas engines converted to LFG
- Used for operation of flaring system

Simeprodeso Monterrey, Mexico

- Jenbacher Engines
- 7.4MW initially and expanded to 12MW
- 6 Gas Pumps
- More than 500 gas wells

Current generation capacity of 12 MW.

Third phase under development to increase capacity to 17 MW.

Innovative Electricity Generation

- Micro-turbines
- Low emissions
- Low maintenance costs
- 30kW to 100kW typical per unit
- High Capital Cost
- Low efficiency unless in CHP project.

High Btu Projects

- Gas cleaning to separate CH₄ and CO₂ and remove trace contaminants
 - Membrane technology
 - Pressure swing absorption, carbon pretreatment, & H₂S removal

University of New Hampshire project fuels campus combined heat and power turbine

 Cleaned gas can be injected into natural gas pipeline or used to fuel electric generating equipment

Governments are interested!

