

Potential for Converting Landfill Gas to Liquefied Natural Gas in India

By

Josias Zietsman and Tara Ramani (TTI) Rakesh Kumar and Sunil Kumar (NEERI)

Methane to Markets Partnership Expo March 4, 2010

Increasing energy consumption Fossil fuel depletion Environmental impacts Pollutant emissions Greenhouse gases

 Landfill gas (LFG) as an alternative source of energy

LFG as an Energy Source

- Contains methane (CH₄) natural gas
 CH₄ is a major greenhouse gas (GHG)
 Beneficial to use LFG as energy source
- LFGTE examples electricity, piped natural gas, transportation fuel

Project Goal

Perform a "pre-feasibility" analysis Converting LFG to CNG to be used as fuel for refuse trucks in India

o Also assess other LFGTE options

Research Approach

- Study of MSW management operations in India
- Methodology to evaluate economic feasibility of LFGTE scenarios
- Application of methodology for three Mumbai landfills
- o Conclusions and recommendations

Landfill Characteristics

India landfills differ from US landfills MSW Management and Handling differ Special socio-economic issues

MSW Characteristics

o Mumbai is a Mega City

o Approximately 9000 tons per day

o Waste composition

- 55% compostable
- 20% recyclable
- 25% other (including inerts)

Mumbai Case Study Landfills

Landfill Site Details

	Site			
Data	Deonar	Mulund	Gorai	
Landfill size	132.1 Ha	25 Ha	19.6 Ha	
Waste in place	7.88 MT	1.50 MT	1.76 MT	
Year filling began	1927	1968	1972	
Closure year	Partial closure	Not yet planned	2008	
Annual waste acceptance	1.5 MT	1.0 MT	0.4 MT	

Model Development

Analysis Scenarios

• Landfill Management Options:

- Do Nothing;
- Cap the landfill and flare; or
- Flare from an active landfill.

• LFGTE Options:

- Convert the LFG to CNG as fuel;
- Convert the LFG to pipeline grade natural gas; or
- Convert the LFG to electricity.

Estimation of LFG Generation

o EPA model for a closed & active landfill

- o Estimate LFG quantities
- o Estimate recoverable biogas
- o Estimate CNG or LNG quantity

$$Q_t = 2 * L_0 * m_0 * (e^{k * t_a} - 1) * e^{-k * t_a}$$

CO₂ Wash Processor at EcoComplex

MSW Collection Fleet

Compactor

Placer

Speed Profile

Emission Differences for Diesel and CNG

Emission factors combined with driving profiles and fleet characteristics

Parameters	ARAI Estimated Emission Factors (g/km)		
	For Diesel Vehicles	For CNG Vehicles	
Carbon Monoxide (CO)	6.0	3.7	
Hydrocarbons (HC)	0.4	3.7	
NOx	9.3	6.2	
Particulate Matter (PM)	1.2	Not Applicable	

Costs Considered

• As applicable:

- Landfill capping costs
- CNG conversion facility cost
- Pipeline natural gas facility cost
- Electricity plant costs
- Flaring system costs
- System and landfill operational costs
- Truck fleet operational and replacement
- Costs of emissions

Benefits Considered

• As applicable:

- Diesel fuel savings
- Earnings from sale of natural gas
- Earnings from sale of electricity
- Carbon credit earnings
- Emissions reductions

Estimation of Net Return

Costs and benefits brought to NPV
20 year analysis period
Net return – difference between NPV of benefits and costs

o B-C Ratio – [NPV of benefits/NPV of costs]

Additional Analysis – without Capping Costs

o Cost of capping and collection system is significant

- o Capping has many social and environmental benefits
- Possibility of obtaining funds for this from other sources (i.e. grants)
- Alternative analysis without capping costs was also performed.

Analysis Results

Scenario	Gorai		Deonar		Mulund		
	Net Benefit (\$)	Return (%)	Net Benefit (\$)	Return (%)	Net Benefit (\$)	Return (%)	
	Landfill Management Options						
Scenario 1: Do Nothing	\$(17,015,502)	N/A	\$ (44,693,492)	N/A	\$(43,859,505)	N/A	
Scenario 2: Cap the Landfill and Flare the LFG	\$ (3,140,569)	-31%	\$(7,870,880)	-30%	\$5,252,208	42%	
Scenario 3: Flare the LFG from an Active Landfill	\$ (1,377,397)	-16%	\$(18,025,538)	-48%	\$8,389,332	80%	
	LFGTE Options						
Scenario 4: Convert LFG to CNG for Use as a Transportation Fuel	\$ (7,375,991)	-33%	\$ 465,457	1%	\$ 13,208,186	54%	
Scenario 5: Convert the LFG to Pipeline Grade Natural Gas	\$ (9,374,035)	-51%	\$ (11,718,243)	-33%	\$ 1,332,408	6%	
Scenario 6: Convert the LFG to Electricity	\$ (3,719,716)	-29%	\$ (15,788,418)	-40%	\$ (1,965,718)	-9%	

Scenario	Gorai		Deonar		Mulund	
	Net Benefit (\$)	Return (%)	Net Benefit (\$)	Return (%)	Net Benefit (\$)	Return (%)
Scenario 4: Convert LFG to CNG for Use as a Transportation Fuel	\$ (1,665,390)	-10%	\$ 22,084,157	135%	\$ 21,366,186	130%
Scenario 5: Convert the LFG to Pipeline Grade Natural Gas	\$ (3,663,435)	-29%	\$ 9,900,457	70%	\$ 9,490,408	67%
Scenario 6: Convert the LFG to Electricity	\$ 1,990,884	28%	\$ 5,830,282	33%	\$ 6,192,282	46%

Concluding Remarks

- **o** LFGTE is an important consideration
- Pre-feasibility study based on conservative assumptions
- Methodology can be applied to different landfills
- o Some India landfills have potential
- o LFG to CNG for refuse trucks is a promising option
- o Full feasibility analysis is required