Permeable Layers to Improve Landfill Gas Recovery from Indian Landfills

March 3, 2010

Don Augenstein¹ Ramin Yazdani² Chetan Zaveri³ John Benemann¹

 ¹ Institute for Environmental Management Inc., 4277 Pomona Avenue, Palo Alto, California, U.S.A.
 ² Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Yolo County, California, U.S.A.
 ³ IL&FS Ecosmart Ltd, Mumbai, India

Presentation

- Introduction
- Description of permeable layer approach and benefits
 Current Project objectives
 The site selection
 Future plans

Typical Landfill and Gas Collection

Current landfill gas collection technology

- Fill waste and cover with soil
- Drill vertical well
- Install gas wells and collect gas
- Adjust gas wells weekly to maximize methane content

Typical Landfill Gas Collection

Limitation with current methods

- No soil cover and waste placement is haphazard
- Poor gas quality due to air entrainment
- Staff needed for constant well adjustment
- Vertical well could be waterlogged

Simplified schematic of conv<u>entional</u> LFG well and gas flow: Illustration of typical problem – irregular surface flux

Arrows and lengths denote gas flows or fluxes.. Note variable surface fluxes and emissions distant from well, entrainment near well, inefficient collection. Fissures, irregularities in waste/ cover exacerbate problems

Permeable Layer Gas Well Benefit

Oxygen intrusion

Pumping well

Without permeable layer

With permeable layer

Results of finite element analysis Pumping rate

Ь

Summary of Benefits

- Recover methane gas for power
- Reduce current fugitive methane emissions
- Revenue generated from power generation
 Revenue generated from carbon credits
 Reduce typical number of gas wells per acre
- Reduce labor cost for gas well monitoring

Application in USA: Placement of Permeable Layer Over Waste

VIEW OF ONE ACRE SHRED TIRE LAYER

SHRED TIRE PERMEABLE LAYER BEING PLACED

USA: Waste Placement Over Permeable Layer

Soil Cover and Gas Collection Piping Installation

Gas Well Installation and Data Collection and Evaluation

Project Objectives in India

Visit sites

Select best site for a demonstration project
Devalue a proliminary design

Develop a preliminary design

Perform feasibility study

Report to EPA Methane to Markets

Site Visit and Selection Criteria

Selection criteria for sites

- Adequate organic waste flow (>1,000 tons per day)
- Waste height (>15 meters)
- Available permeable material for use
- Available soil cover on site
- Available equipment and personnel
- Agency cooperation, assistant, and technical knowledge
- Site security for future demonstration project
- Power generation potential on-site

INDIA PROJECT TEAM

IL&FS ECOSMART LTD: EAST MUMBAI, INDIA

IL&FS Ecosmart, located in East Mumbai, India. Technical expertise and numerous contacts in India's municipal waste industry were of inestimable value in conducting the project

3 India Trips

November 2008 – Chennai January 2009 – Multiple sites January 2010 – Mumbai – 3 sites

SUMMARY OF SITES EVALUATED

Trip 1 November 2008 (Benemann) Chennai -- Kodungaiyur

Trip 2 January 2009 (Yazdani, Zaveri) New Delhi --Okhla New Delhi -- Balsawa New Delhi —Gazipur Agra - Shahdara Perungudi - Chennai Vellakal - Madurai TN Betahalli Bangalore Vidyaranyapuram Mysore (City) Hubli Dharwad Karnataka Hyderabad

Trip 3 January 2010 Mumbai (Augenstein, Yazdani, Zaveri, Augenstein)

Mulund Kalyan Dombivali Ulhasnagar

OFFICIALS MET: 3 MUMBAI SITES:

1. Mulund, Mumbai

Mr. R. A. Rajeev, IAS, Additional Municipal Commissioner
Mr. B.P. Patil, Chief engineer (SWM), In-charge (and Dy. Ch. Engineer (SWM) Projects) [He holds 2 positions]
Mr. P.S. Awate, Executive Engineer, SWM Project
Mr. Phalari, Executive Engineer, SWM Project
Mr. Machewad, Sub-Engineer, SWM Project
Mr. Desai, Asst. Engineer, SWM Project

2. Kalyan Dombivali, Mumbai

Mr. Pramod Narkhade, Sanitary InspectorMr. Sulakhe, APHOMr. Shiju Jacob, Antony Waste Handling Cell (P) Ltd.

3. Ulhasnagar, Mumbai

Mr. Mhatre Mr. Shiju Jacob, Antony Waste Handling Cell (P) Ltd.

Mulund Site Findings

Adequate waste and height Potential permeable layer and cover soil available! Needed equipment available Agency cooperation and interest Potential future power generation facility from methane Site can be secured to prevent damage to pipes and equipment

Mulund Site Findings--cont

- Future capacity and operation assured.
- Footprint for testing can be available
- Onsite technical personnel for vessel methane digester can do gas sampling
- Needed equipment available
- Ability to collaborate with IL&FS Ecosmart

Example of Mulund Data: Waste Analysis (IL&FS Ecosmart, Mumbai, India)

Table 1: Average Characteristics of MSW Reaching the Mulund Disposal Site

Sr. No	Parameter	Avg. 7 Days (3 Shifts)
a	Vehicles Sampled	11
ь	Weight of Sample collected for Physical Analysis (Kg)	100
A. Physical Characteristics (% of total weight)		
1	Wet organic Material (above 1 sq. inch mesh)	
2	Kitchen waste	39.24
b	Fruit waste	8.33
с	Flower waste	0.14
d	Green grass	0.62
e	Animal Excreta	0.00
2	Wet organic Material (below 1 sq. inch mesh)	3.79
	Total Wet Organic Material	52.12
3	Dry organic material	
a	Dry grass	9.10
b	Dry tree remaining	0.48
с	Cotton waste	2.48
d	Wood Chips	0.33
e	Wooden furniture waste	0.62
	Total Dry Organic Material	13.01
4	Recyclable Materials	
a	Plastic	10.14
b	Paper	7.52
с	Cardboard	0.00
е	Thermocol	0.19
f	Glass	0.71
g	Rubber	0.52
h	Leather	0.67
i	Metals	0.19
	Total Recyclable Material	19.94
5	Inert	
2	Sand and Silt	11.64
b	Stone	0.81
с	Bricks	2.48

SIMPLE TEST AREA CONFIGURATION

Side view of permeable sub-area

Site Challenges

Issues:

- Waste fires frequent (but usually small)
 Air intrucion could be on issue
- Air intrusion could be an issue
- Leachate seeps

Addressing Site Challenges

Potential Solutions:

- Add cover soil and compact to stop fire
- Construct test cell away from the side slopes
- Pump leachate from the perimeter ditches and inject near top and side slopes to stop fire and eliminate leachate runoff from site

Future Plans

Explore support for construction and operation of a demonstration project
 Construct and monitor project
 Expand project to other sites (India and worldwide)

Questions and Answers?

