Thailand Swine Farm Biogas Implementation Programs/Policies

Poon Thiengburanathum, Ph.D., Faculty of Engineering, Chiang Mai University

- Introduction Swine Farms in Thailand
- Overview Biogas Programs
- Implementation Bundling and Programmatic CDM
- Summary The New Opportunity

Thailand Swine Farms Situation

The Baseline

Swine in Thailand

There are 7.15 million swine in Thailand

Farm Size	No. or pigs	No. of Farms	Total Pigs head (million)
Small	50-500	>200,000	3
Medium	500-5,000	1,309	1.36
Large	>5,000	186	2.78

Source: Department Livestock Development

Scope / Marketing Issues/Analysis

Annual number of swine in Thailand (animals)

Farm's Environment

Barn for Swine

Industry Situation

- > 6 millions in Thailand
 - Open Lagoon
 Situation
 - Odors,
 - Fly,
 - Leakage,
 - Wastewater
 - CH4 Emission

Background of Biogas System

Biogas System in Thailand

Key Types of System

- Fixed Dome: Small Scale
- Plastic Bag System: Small Scale
- Cover Lagoon: Medium to Large Scale
- Chanel Digester: Medium to Large Scale
- CSTR: Medium to Large Scale

Cover Lagoon

Cannel Digester

IC-UASB

Biogas System is introduced

- Electrical/heat utilization in farm Reused water Piggery Farms Garbage/Large Garbage/ Pre-Treatment Aggregate Large Screen aggregate Collecting Tank Sand Trapping, Sand Cyclone Bioreactor Biogas Effluence **Biogas** Reactor Energy Utilization Post Post-Treatment Treatment Sludge Gas Pond Storage Open Pond Gas **Biogas Flare Sludge Drying** Utilization System Water System System Reserved Pond Energy Fertilizer Fertilizer Solling out
- Pre-Treatment
- Bioreactor
- Post-Treatment
- Energy Utilization

Facts

- 1 LU = 500 kg = Average 8.3 pigs
- 37-40 liters/day
 - 10-12 kg of solid waste
 - 25-27 liters of urine
 - 185-190 liters/day of water/farming activity
- 0.9 cu.m./day (@ 0.55 biodegradable rate)
- 1 cu.m. of Biogas
 - 0.46 kg LPG
 - 0.67 liters of gasoline
 - 1.2-1.4 kwh

Pre-Treatment: CT

Pre-Treatment: ST

Waste Water

Post-Treatment: Solar Drying

Post-Treatment: Liquid Fertilizer and Artificial Pond

GAS Utilization: Heat

GAS Utilization: Electricity

System Design

- Holistic View
- Simplified
 LCA
- Coping w/ Multiple
 Dimensions
 Problems

An Example Evaluation

Biogas Programs and CDM Approaches

Current Biogas Market in Thailand

Technology is not Bottleneck

• Peculiarity

Join Funding or Subsidy Issues

Small scale > Department of Agricultural Extension (DOAE)

- Implemented by DOAE since 1996-2004
- Installed 1,655 fixed dome biogas unit
- Total digester volume is 75,000 m³
- Government subsidized 45%
- Medium-Large farms > Chiang Mai University

The technology modified from an imported prototype in 1984
Installed 150 plants in medium-large swine farms
Channel Digester + UASB, remove 80-90% COD
Government subsidized: Phase I (1995-1998) 47%, Phase II (1997-2003) 33% and Phase III (2002-2008) 18%

Financial : Energy Conservation Fund, Energy Policy and Planning Office (EPPO), Ministry of Energy

Source: ESMAP and CFU (2007)

Model CDM project Boundary

Benefit of Bundled CDM project

Programmatic CDM

The program is expected to play an important role in demonstrating the use of market mechanisms such as the CDM to scale-up renewable energy projects through improved livestock waste management while reducing GHG emission as well as generating CERs. The program aims at small and medium size pig farms under ERDI sponsorship for their biogas program.

- All CDM Program of Activity (CPA) use the same technology as well as Baseline & Monitoring Methodology
- CPA may be added at anytime during the life of POA
- each CPA will have credit period of 7-10 years subject to the POA
- each CPA will comments by local stakeholders
- each CPA may consist a group of farms

ERDI = Energy Research and Development Institute, Chiang Mai University
The World Bank = Assist in Project Development and Purchase Emission Reduction
MOU = Memorandum of Understanding
LOI = Letter of Intend
ERPA = Emission Reduction Purchase Agreement

Management Concepts

- Risk Identification: Where is the Risk come from (e.g. Technology, Finance, and People)
- Risk Analysis: What is the impacts and probability of the events.
- Risk Reduction: Risk Reduction Strategies and Plans

Policy for CPA Management

- Be Clean Clean Eligibility
- Be Clear Transparent and Trustful
- Be Communicate to Fill the gap of differentiation
- Be Commune One for all and all for one

Project Component

Risk Treatment Strategies

- Standardization
 - Technology
 - Management
- Enhancing selecting process (client categorization)
- 3rd party verification and validation
- Enhance organization communication and problem solving system
- Retention fund
- Transparent
- Share risks and rev. among participants

Risk Reduction

- Class A Low Risk and High Return
- Class B Medium Risk and High Return
- Class F High Risk

Process of Selection

Technology Selection

System Diagram for Monitoring

Online Monitoring Diagram

Biogas generator

What's Next

The New Era of Our Age

Doing PoA = Growing Trees

Lessons and Learns

- Segmented implementation
 - Different type of clients, different approaches
- Improvement throughout supply chain
- Appropriated Supports
 - Technical Side
 - Financial Side
 - Management Side
- Market mechanism: key to be sustainability

Questions and Answers

