Best Practices for CMM Utilization – End Use Options

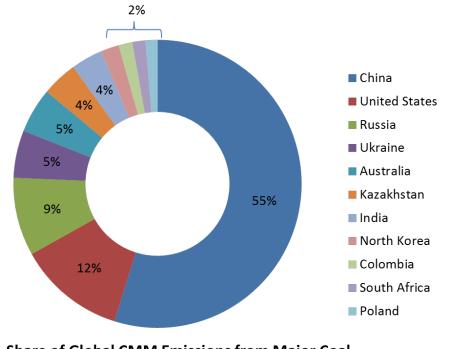
GMI Coal Mine Methane and Coalbed Methane Technical Workshop June 4, 2015 Bogotá, Colombia

Clark Talkington, Advanced Resources International, Inc.

Presentation Outline

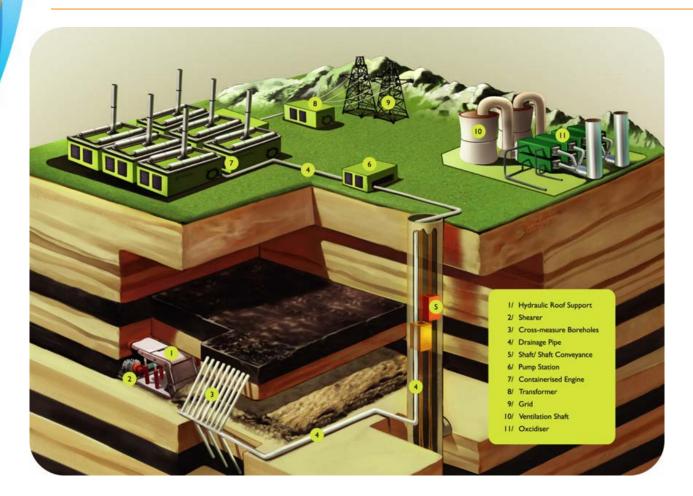
- Introduction to ARI
- Coal Mine Methane Sources
- Methane Drainage Use Technology Options
- Ventilation Air Methane (VAM) Use Technology Options
- Project Economics
- Developing a CMM Project
- Financing a CMM Project
- Conclusions

Advanced Resources International


- A consulting, research and development firm
- Principal practice areas
 - Coal mine methane (CMM)
 - Unconventional gas development (gas shales, coalbed methane and tight sands)
 - Enhanced oil recovery (EOR)
 - Carbon capture, utilization and storage (CCUS).
- Experience in over 30 other countries

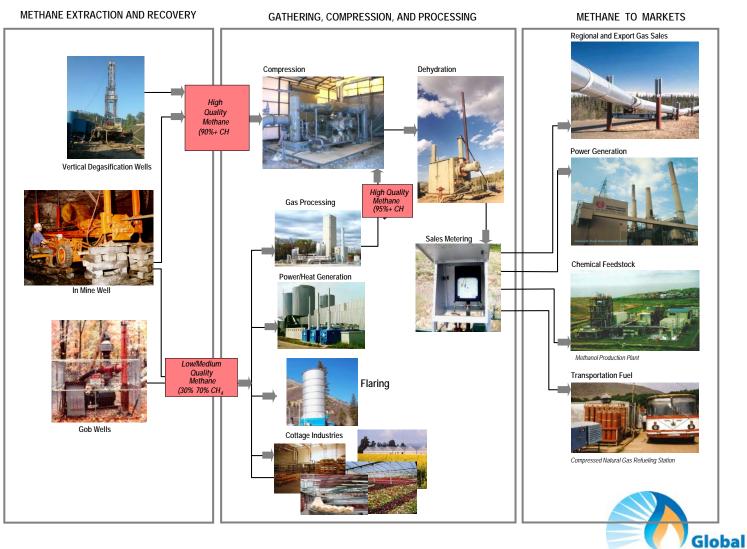
Sources of Coal Mine Methane

- CMM = 8% of Global CH₄ Emissions
- CMM emissions are growing.
 - In 2014, CMM emissions totaled
 621MMtCO2e (44 BCM)*
 - By 2030, CMM emissions projected to increase to 784 MMTCO₂E (55 BCM)*



Share of Global CMM Emissions from Major Coal Mining Countries (Million tCO2e)

Source: US EPA 2012


Integrated CMM Capture and Utilization at an Operating Mine

Source: UN Economic Commission for Europe. Best Practice Guidance on Effective Methane Drainage and Use in Coal Mines. Schematic courtesy of Green Gas International, Inc.

Methane Drainage Value Chain

Methane Initiative

Methane Drainage Use and Destruction Technology Options

Technology	Comments		
Natural Gas Pipeline Sales	 Economic where extensive gas pipeline network is accessible Requires consistently high gas quality to meet pipeline specifications. 		
Power Generation	 Most common use worldwide Used mostly in internal combustion (IC) engines but can be used in gas turbines. Modular configuration with small engines (500kW-3 MW) are most common 		
Vehicle Fuel – CNG/LNG	 Requires a very pure methane stream. Infrastructure necessary to move CNG/LNG to market or use on-site Expensive options but becoming more attractive 		
Boiler Fuel	 Very common Used to heat water or air for mine buildings (e.g. showers/space heating) and shaft heating. Not technologically complex and can use mine gas with 30% CH4 concentration. 		
Direct Heating	Mine shaft heating in winterIndustrial furnaces		
Flaring	 Destruction-only technology. Can use mine gas with concentrations down to 30%. For stranded gas with no market, as an interim GHG destruction option, or to destroy excess GHGs in an integrated CMM project. 		
Other uses	 CMM has been used in methanol production, glass making, steel manufacturing, desalination plants, green houses, and coal drying. 		

Methane Drainage Key Points

- Technologies to use or destroy CMM are the same as those that use natural gas.
- End use is determined by many factors:
 - Gas quality (CH₄ %)
 - Gas quantity (4.2 m³/min CH₄ = 1 MW)
 - Access to markets
 - Infrastructure
 - Financial position
 - Staff capacity
 - Mining company priorities
 - Government policy priorities

Methane Drainage Key Points

- Projects often include a portfolio of technologies to maximize gas use.
- When deciding what technology to use:
 - Power, flaring, boilers, and vacuum pumps require minimal gas treatment
 - LNG, CNG, and pipeline sales require expensive gas treatment
- In order to implement a successful methane drainage project:
 - Improve gas availability (gas quantity and quality) and maintain CH4 concentrations above the explosive range
 - Size plant properly- 80% of average gas flow
 - Flare gas when not used rather than venting
 - Regular maintenance and overhaul are required to keep the plant operating

Ventilation Air Methane (VAM) Technology Options

Range of Technologies have been identified

Only 2 have been used commercially

Regenerative Thermal Oxidation

- Oxidizes VAM at 1000°C
- Technology common in manufacturing operations to destroy very low concentrations of VOCs
- Destruction only or energy recovery
- 1 VAM power project in Australia, and 1 under construction in China.

Ancillary Use as Combustion Air

- Successfully used in Australia at a 54 MW CMM power plant use 1 MW internal combustion engines
- Improved efficiency of the gas engines
- Resulted in some corrosion problems

Duerping Mine (China)

Marshall County Mine (USA)

Jim Walter Resources Blue Creek #4 (USA)

VAM Technologies on the Horizon

- Regenerative Catalytic Oxidation
- Lean- burn turbines and microturbines
- Rotary Kilns

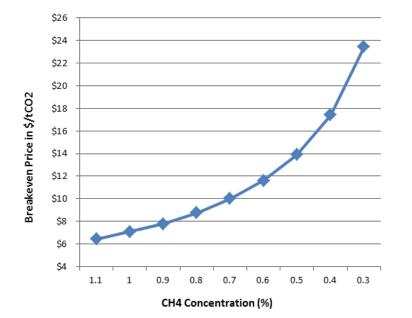
Ventilation Air Methane (VAM) Key Points

- Success of projects is almost entirely dependent on carbon markets
- Some potential for power generation, but it requires a consistent and high VAM concentration (1% CH4)
 - One option is to enrich the VAM with supplemental drained gas
- CH4% is critical the higher the CH4% the larger the emission reductions and the more carbon offsets that are generated.
- Proven technologies are available and in operation
- Other technologies close to commercialization

Project Economics- Gas Drainage

Notional Costs of Gas Drainage Projects

Technology	Capital Costs	Operating Costs
Flaring Enclosed (ground flare) Open (candlestick flare)	\$120,000 - \$450,000 (290 - 1,089 mln Colombian Peso) \$30,000-130,000 (72 – 314 mln Colombian Peso)	\$10,000 - 20,000 per year (24 — 48 mln Colombian Peso) \$5,000 -15,000 per year (12,106,250 — 36,318,750 Colombian Peso)
Power generation	\$0.75 - 1.5 million per MW installed (1,815 – 3,631 mln Colombian Peso)	\$0.015 - 0.03 per kWh (36.319 – 72.638 Colombian Peso)
Natural gas pipeline sales (assume gas conditioning)	\$2 - \$4 million (4,842 – 9,685 mln Colombian Peso)	\$400 - \$600K per year (968 – 145 mln Colombian Peso)
LNG	\$3 million per 1 MMcf/d processed (7,263 mln Colombian Peso)	\$1.5 - \$2 million per year (3,631 - 4,842 mln Colombian Peso)


- Projects often include a portfolio of technologies to maximize gas use
- A CMM power project will typically include:
 - Gas engines with generators
 - Flare
 - A passive vent
 - Possibly heat recovery

Project Economics- VAM

VAM Destruction and Use

Technology	Capex	Opex
Regenerative Thermal Oxidizer (RTO)	\$50,000-\$75,000 per m ³ /s throughput installed (eg. 60 m ³ /s unit = \$3-4.5 million) (121 mln – 181 mln Colombian Peso)	60% of lifecycle project costs for a 10-year project (for 60 m³/s unit, opex = \$675,000/yr)

Breakeven price of an example VAM project at different CH₄ concentrations

- VAM projects are capital intensive
- VAM projects can have high O&M costs
- Can generate significant revenue at attractive carbon prices due to high CH₄ throughput

Financing a CMM Project

- Available funding
 - Do it yourself- internally financed
 - Private Equity
 - Debt providers- commercial or investment banks
 - Targeted investment funds
 - Developer/ investors
 - Carbon credit buyers or buyers with focus on Corporate Social Responsibility
- Critical to secure financing from 3rd parties
 - Credible gas resource assessment and full feasibility study with financial analysis
 - Off- take agreements with credit- worthy partners
- Secure carbon financing or other environmental finance in addition to internal financing and institutional finance

Conclusions

- There is a long history of CMM capture and use worldwide and much experience to access
- Recovery of CMM is largely from underground mines but there have been surface mine methane projects
- Power generation, boiler fuel, gas pipeline sales, flaring and local distribution are the most common uses for gas drainage.
- VAM accounts for 70% of methane emissions from underground coal mines.
 - Any sustained effort to reduce Greenhouse Gas emissions from the coal sector must address VAM emissions.
 - Regenerative Thermal Oxidation is a commercially proven technology available currently in use.
 - Other technologies have been field tested and are close to commercialization.

Contact Information

Clark Talkington Vice President Advanced Resources International, Inc. 4501 Fairfax Dr, Suite 910 +1 (703) 528-8420 ctalkington@adv-res.com www.adv-res.com

