DI&M (Directed Inspection & Maintenance), A Gas STAR International Best Practice

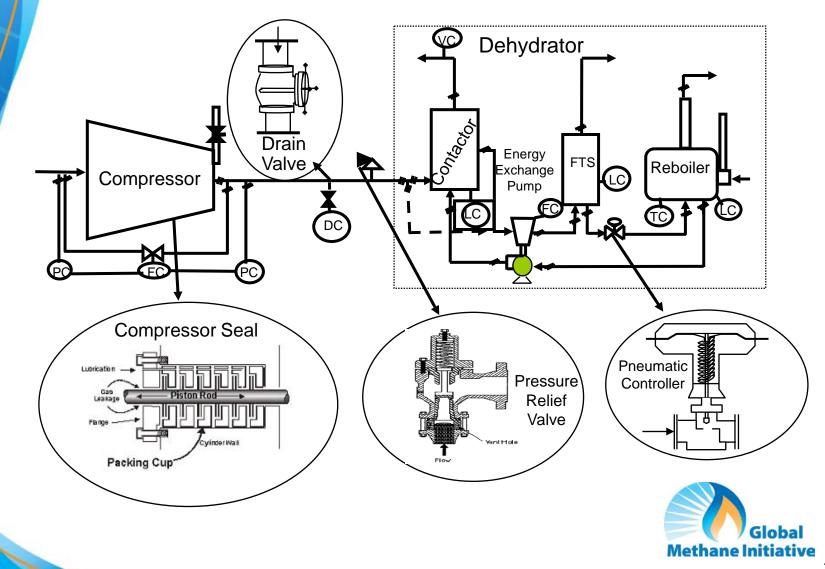
1st Asia Pacific Global Methane Initiative Oil & Gas Sector Workshop

September 23, 2011 Jakarta, Indonesia

Don Robinson ICF International

Agenda

- What is the Problem?
- Methane Losses
 - Sources of methane emissions
 - What are the losses?—Clearstone
- Methane Recovery
 - What is Directed Inspection and Maintenance (DI&M)?
 - How do you implement DI&M?
- Estimating Comprehensive Survey Cost
- Is Recovery Profitable?
- Contacts and Further Information

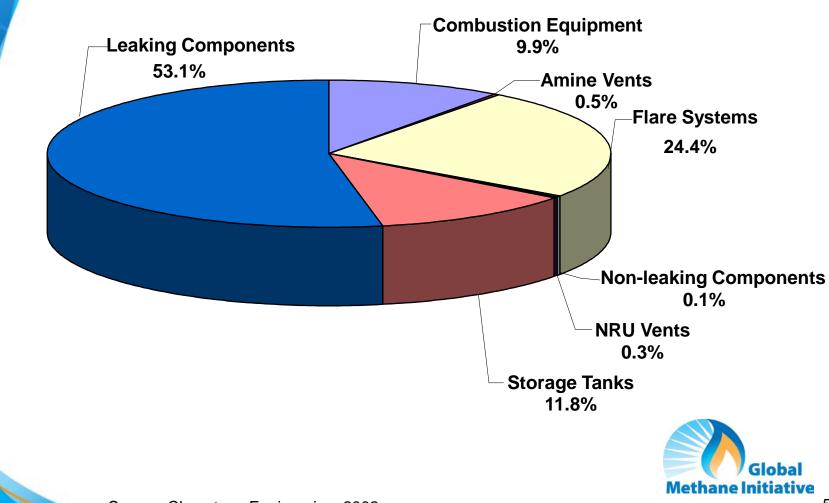


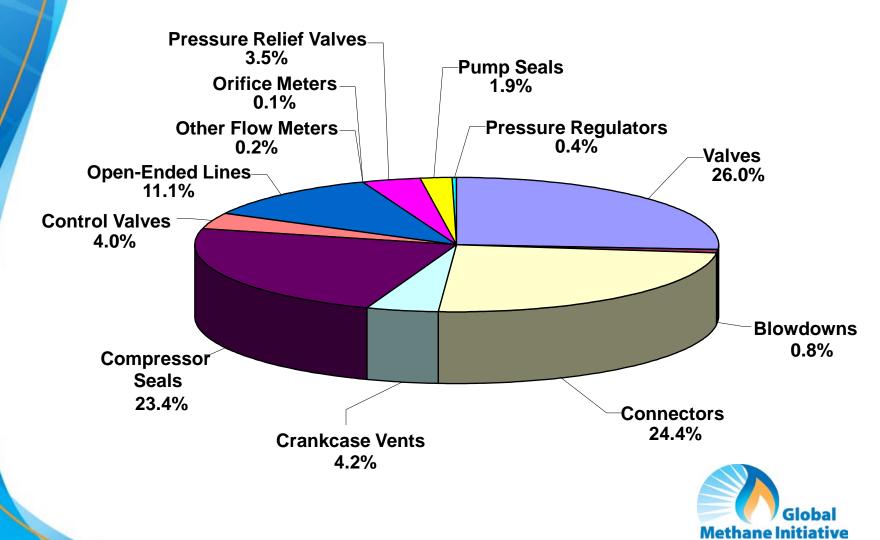
What is the Problem?

- Methane gas leaks are invisible, unregulated, and go unnoticed
- Natural Gas STAR Partners find that valves, connectors, compressor seals, and open-ended lines (OELs) are major methane fugitive emission sources
 - In 2007, 104.5 million cubic meters (MMcm) of methane was emitted as fugitives by reciprocating compressor related components alone
 - Production and processing fugitive methane emissions depend on operating practices, equipment age, and maintenance

Sources of Methane Emissions

What are the losses?— Clearstone


- Clearstone studied 4 gas processing plants
 - Screened for all leaks
 - Measured larger leak rates
 - Analyzed data
- Principles are relevant to all sectors
 - Fugitive leaks from valves, connectors, compressor seals, and lines still a problem in production
 - Solution is the same


Source: Hy-bon Engineering

Distribution of Losses by Source Category

Distribution of Losses from Equipment Leaks by Type of Component

Fugitive Equipment Leaks

F 10 F	Number of Components	Leak Frequency (%)	Emissions From All Leaking Sources		Combustion to THC Emissions
Facility Type	surveyed Per Site		Methane	Value	Top 10 Sources
			(tonnes/year)	(\$/year)	(%)
	56461	1.7	997	500253	35
	16050	3.5	471	320608	36
	14424	3.0	1412	558665	64
	14174	4.0	1376	553248	36
Gas Plants	11556	3.3	1215	621061	33
	13133	2.5	186	386538	57
	13471	1.2	299	178744	93
	3672	10.3	2334	1262874	77
	5979	0.6	29	11863	93
TOTAL	148920		8320	4393854	
AVERAGE	16547	2.5	924	488206	54
	608	5.1	110	61572	90
	4626	1.1	98	49184	83
	3084	0.7	169	98802	95
	6168	1.0	194	103508	64
Compressor Stations	1568	4.2	80	33552	80
	224	1.3	0	189	100
	1391	1.9	4	2367	88
	2115	1.8	67	27855	89
	2516	1.1	45	18901	91
TOTAL	22300		767	395928	
AVERAGE	2478	1.5	85	43992	83
	1474	0.2	1	50 ⁴	100
Well Sites	1617	1.5	1	351	88
	1797	0.4	1	585	100
TOTAL	4888		3	1437	
AVERAGE	407	0.7	0	120	97

Value of emissions based on natural gas price of \$6.78/GJ

Methane Recovery

- Fugitive losses can be dramatically reduced by implementing a directed inspection and maintenance program
 - Voluntary program to identify and fix leaks that are cost-effective to repair
 - Survey cost will pay out in the first year
 - Provides valuable data on leak sources with information on where to look "next time"

What is Directed Inspection and Maintenance?

- Directed Inspection and Maintenance (DI&M)
 - Cost-effective practice, by definition
 - Find and fix significant leaks
 - Choice of leak detection technologies
 - Strictly tailored to company's needs

Source: Targa Resources

What are the Benefits of DI&M?

- Attractive payback (often <6 months)
- Reduced maintenance costs
- Reduced downtime
- Improved process efficiency
- Safer work environment
- Cleaner environment
- Resource conservation

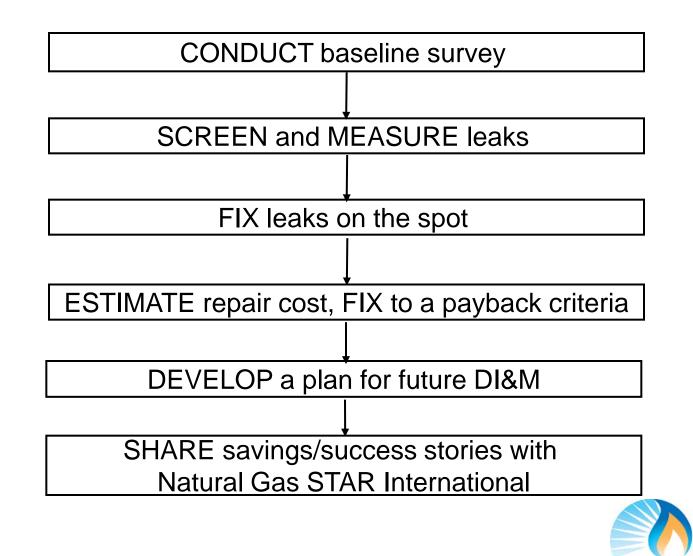

Where Should Leak Monitoring Efforts Be Focused?

Table 1. Sample leak statistics for gas transmission facilities.						
Source	Number of Sources	Leak Frequency	Average Emissions (kg/h/source)	Percent of Component Population	Contribution to Total Emissions (%)	Relative Leak Potential
Station or Pressurized Blowdown System ⁶	219	59,8	3,41E+00	0,131	53,116	7616
Compressor Seal – Centrifugal ²	103	64,1	1,27E+00	0,062	9,310	2838
Compressor Seal – Reciprocating ²	167	40,1	1,07E+00	0,100	12,764	2400
Pressure Relief Valve	612	31,2	1,62E-01	0,366	7,062	362
Open-Ended Line	928	58,1	9,18E-02	0,555	6,070	205
Orifice Meter ⁷	185	22,7	4,86E-02	0,111	0,641	109
Control Valve ⁴	782	9	1,65E-02	0,468	0,919	37
Pressure Regulator	816	7	7,95E-03	0,488	0,462	18
Valve ⁹	17029	2,8	4,13E-03	10,190	5,011	9
Connector ³	145829	0,9	4,47E-04	87,264	4,644	1
Other Flow Meter ⁸	443	1,8	9,94E-06	0,265	0,000	0,02

Source: Clearstone Engineering, 2007

How Do You Implement DI&M?

How Do You Implement DI&M?

- Screening find the leaks
 - Soap bubble screening
 - Electronic screening ("sniffer")
 - Toxic vapor analyzer (TVA)
 - Organic vapor analyzer (OVA)
 - Ultrasound leak detection
 - Acoustic leak detection
 - Infrared leak detection

Acoustic Leak Detection

How Do You Implement DI&M?— Infrared Leak Detection

- Real-time detection of methane leaks
 - Quicker identification & repair of leaks
 - Screen hundreds of components an hour
 - Screen inaccessible areas simply by viewing them

Infrared Leak Detection

Source: Leak Surveys Inc.

Remote Methane Leak Detector

Source: Heath Consultants

How Do You Implement DI&M?

- Evaluate the leaks detected measure results
 - High volume sampler
 - Toxic vapor analyzer (correlation factors)
 - Rotameters
 - Calibrated bagging

Leak Measurement Using High Volume Sampler

How Do You Implement DI&M?

Summary of Screening and Measurement Techniques				
Instrument/ Technique	Effectiveness	Approximate Capital Cost		
Soap Solution	**	\$		
Electronic Gas Detector	*	\$\$		
Acoustic Detector/ Ultrasound Detector	**	\$\$\$		
TVA (Flame Ionization Detector)	*	\$\$\$		
Calibrated Bagging	*	\$\$		
High Volume Sampler	***	\$\$\$		
Rotameter	**	\$\$		
Infrared Leak Detection	***	\$\$\$		
Source: EPA's Lessons Learned				

- ★ Least effective at screening/measurement
- $\star \star \star$ Most effective at screening/measurement

\$ - Smallest capital cost

\$\$\$ - Largest capital cost

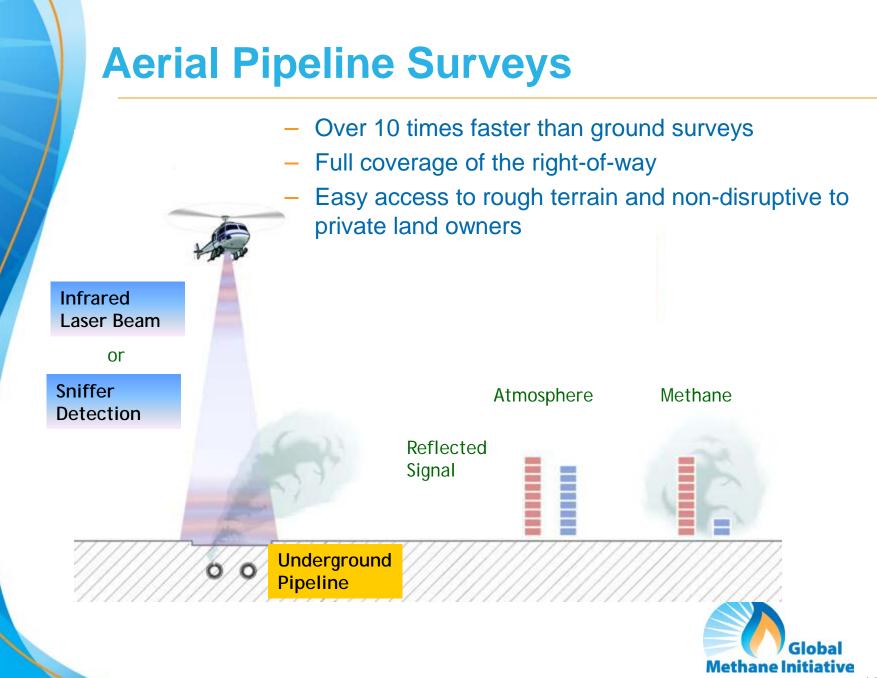
Estimating Comprehensive Survey Cost

- Cost of complete screening survey using high volume sampler (processing plant)
 - Ranges \$15,000 to \$20,000 per medium size plant
 - Rule of Thumb: \$1 per component for an average processing plant
 - Cost per component for remote production sites would be higher than \$1
- 25 to 40% cost reduction for follow-up survey
 - Focus on higher probability leak sources
 - (e.g. compressors)

DI&M - Aerial Leak Surveys

Aerial leak surveys with infrared leak detection devices can aid in leak identification over large sections of pipelines

 Aerial surveys can be conducted in helicopters or fixed wing aircrafts using both active and passive IR detection devices

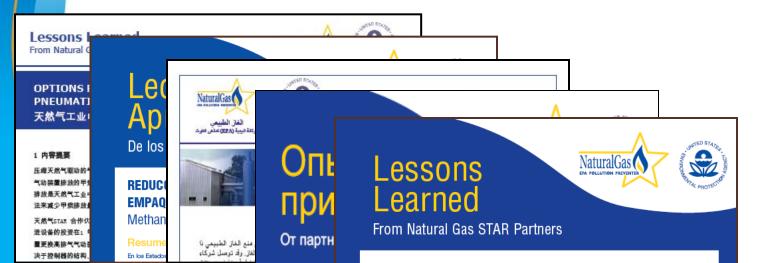


Source: LaSen Inc.

Met

Source: ANGEL, Aerial image

Is Recovery Profitable?


Repair the Cost-Effective Components					
Component	Value of lost gas ¹ (\$)	Estimated repair cost (\$)	Payback (months)		
Plug Valve: Valve Body	29,498	200	0.1		
Union: Fuel Gas Line	28,364	100	0.1		
Threaded Connection	24,374	10	0.0		
Distance Piece: Rod Packing	17,850	2,000	1.4		
Open-Ended Line	16,240	60	0.1		
Compressor Seals	13,496	2,000	1.8		
Gate Valve	11,032	60	0.1		
Source: Hydrocarbon Processing, May 20 1 – Based on \$7/Mcf gas price	02				

Contacts and Further Information

- More detail is available on these practices and over 80 others online at: <u>epa.gov/gasstar/tools/recommended.html</u>
- For further assistance, direct questions to:

Scott Bartos EPA Natural Gas STAR Program <u>bartos.scott@epa.gov</u> +1 (202) 343-9167 Don Robinson ICF International <u>drobinson@icfi.com</u> +1 (703) 218-2512

Following Presentations on Leak Detection

 "Leak Detection Practices & Demonstration of Optical Imaging" *Milton Heath III Heath Consultants*

Manager Professional Services Division

 "Leak Detection Practices via FLIR Optical Imaging"
Raymond Lau
FLIR Systems Co. Ltd.
Area Manager – ASEA

