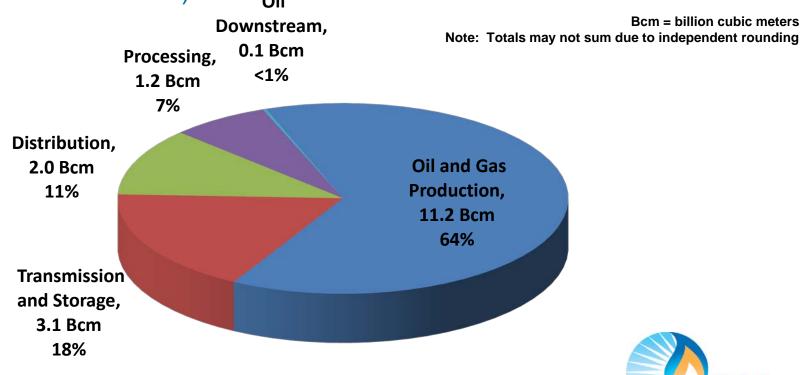
US EPA's Natural Gas STAR International: An Overview of Emission Reduction Best Practices

1st Asia Pacific Global Methane Initiative Oil & Gas Sector Workshop

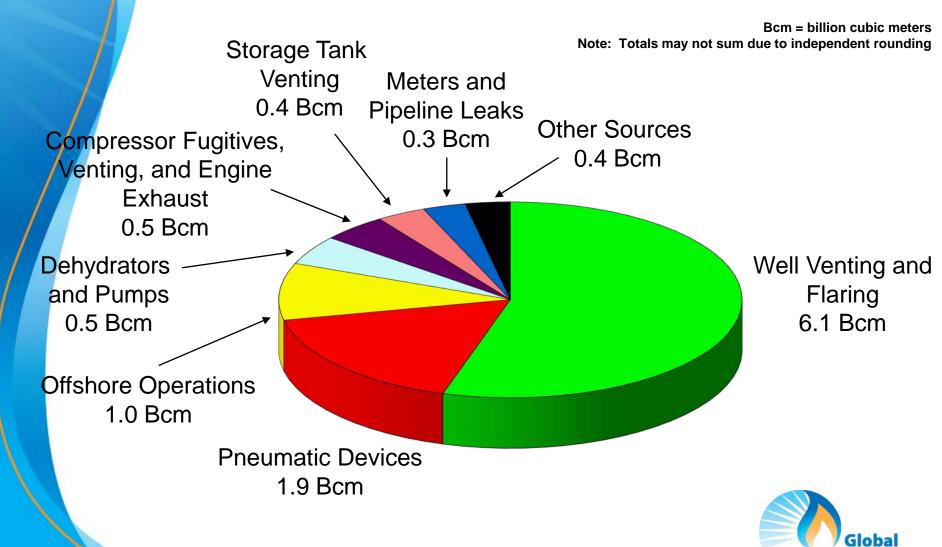
September 23, 2011 Jakarta, Indonesia

Don Robinson ICF International


Agenda

- U.S. Oil & Gas Industry Methane Emissions
- U.S. Production Sector Methane Emissions
- Top Production Sector Fugitive and Vented Methane Emission Sources and Reduction Options
 - Tank Venting
 - Compressor Methane Losses
 - Pneumatic Instrument Venting
 - Dehydrators
- Contacts and Further Information

Oil and Gas Methane Emissions by Sector – U.S. Example


2009 U.S. methane emissions from oil and natural gas industry:
 17.7 Bcm (3.8% of total U.S. greenhouse gas emissions)

EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2009.* April, 2011. Available on the web at: epa.gov/climatechange/emissions/usinventoryreport.html.

Metha

2009 Production Sector Methane Emissions (11.2 Bcm)

EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2009.* April, 2011. Available on the web at: epa.gov/climatechange/emissions/usinventoryreport.html.

Metha

Top Production Sector Fugitive and Vented Methane Emissions Sources and Reduction Options

- Tank Venting
 - Install vapor recovery units and micro turbine generators
- Methane Losses Reciprocating Compressors
 - Economic rod packing replacement in reciprocating compressors
- Methane Losses from Centrifugal Compressors

 - Replace centrifugal compressor wet seals with dry seals
 Route seal oil degassing vent and blowdown gas vent to fuel line
- **Pneumatic Instrument Venting**
 - Replace high bleed with low bleed or instrument air
- **Dehydrators**
 - Optimize circulation rate
 - Install flash tank
 - Install electric pump

Tank Venting

- Problem: Gas is vented from low-pressure crude oil and gas condensate storage vessels due to flashing, working, and standing losses
- Best Management Practices (BMPs): Vapor recovery towers (VRT) and units (VRU) capture tank vapors using compressors

Source: Anadarko, VRT

The Heart of a VRU is the Compressor

- Reciprocating and centrifugal compressors are best in dry gas service – NOT vapor recovery
 - Vapor recovered from storage tanks will be "wet" gas (at the liquid saturation point)
 - Wet gas fouls the valves & seals / compromises lube oil
- VRU installations commonly use compressors that work well with wet gas
- Recommended choices
 - Rotary compressors require electrical power or engine driver
 - Sliding vane or rotary screw compressors
 - Scroll compressors

What is the Recovered Gas Worth?

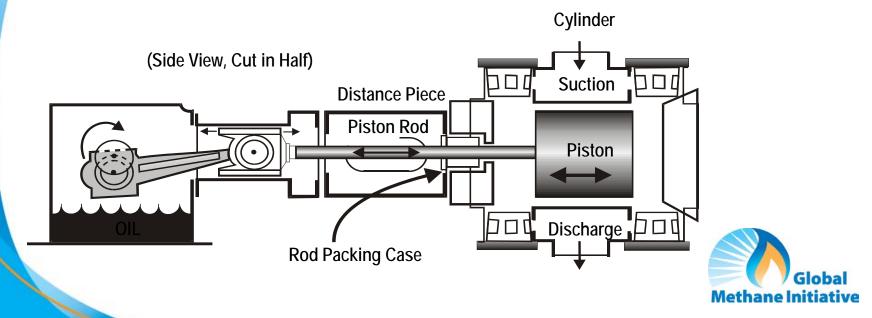
- Value depends on heat content of gas
- Value depends on how gas is used
 - On-site fuel
 - Valued in terms of fuel that is replaced
 - Natural gas pipeline
 - Measured by the higher price for rich (higher heat content) gas
 - Gas processing plant
 - Measured by value of natural gas liquids and methane, which can be separated

Case Study: Analysis of Methane Recovery from Colombia Tank Battery

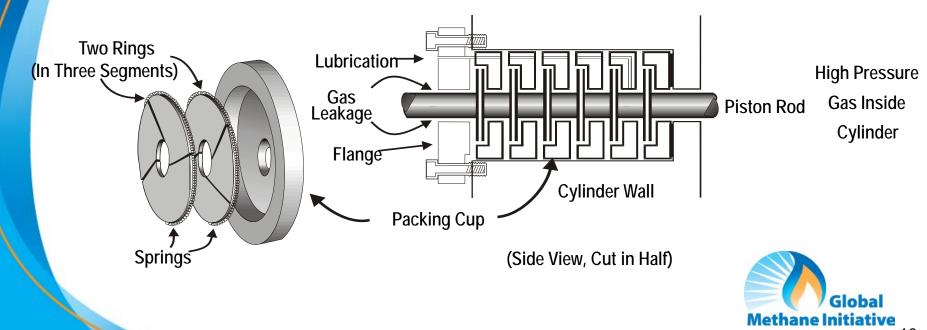
- EPA analyzed company-provided operational data to provide Columbia with recommendations for cost-effective methane mitigation
 - Two sources of wasted methane: methane from gas-liquid separator flared and methane from oil-water separator vented
 - Currently importing expensive diesel to supplement grid electricity

Preliminary proposal

- Install VRU to capture vented emissions
- Install compressor to increase gas condensate output and improve gas quality
- Install Reciprocating Engine/Generator to burn previously flared gas for electricity


Estimated Benefits

- Carbon emissions reduction of 283,000 m³ per year methane or 80,000 TCO2e per year
- 8 Mega Watts (MW) of power generated
- 14 months simple payback and 87% internal rate of return


Methane Losses from Reciprocating Compressors

- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 0.3 to 1.7 cubic meters per hour (m³/hr)
 - Worn packing has been reported to leak up to 25.5 m³/hr
- BMP: economic replacement of rod packing

Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings and between rings and shaft

Solution: Economic Replacement

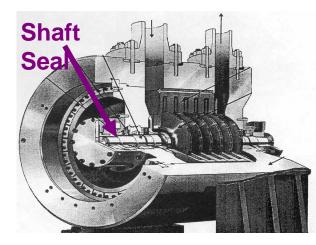
- Measure rod packing leakage
 - When new packing installed—after worn-in
 - Periodically afterwards
- Determine cost of packing replacement
- Determine economic replacement threshold
 - Partners can determine economic threshold for all replacements
 - This is a capital recovery economic calculation
- Replace packing when leak reduction expected will pay back cost CR * DF * 1,000 (H * GP)

Economic Replacement Threshold (m³/hour) =

Where:

- CR = Cost of replacement (IDR)
- Discount factor at interest *i* DF =
- Hours of compressor operation per year Gas price IDR/thousand cubic meters) н
- GP =

$$DF = \frac{i(1+i)^n}{(1+i)^n - 1}$$


Industry Experience – Northern Natural Gas (U.S. Transmission Company)

- Monitored emissions at two locations
 - Unit A leakage as high as 301 liters/minute (18 m³/hour)
 - Unit B leakage as high as 105 liters/minute (6 m³/hour)
- Installed low emission packing (LEP)
 - Testing is still in progress
 - After 3 months, leak rate showed zero leakage increase

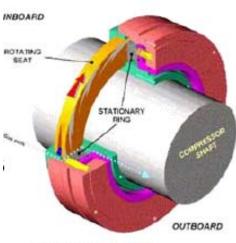
Methane Losses from Centrifugal Compressors

- Centrifugal compressor wet seals leak little gas at the seal face
 - The majority of methane emissions occur through seal oil degassing which is vented to the atmosphere
 - Seal oil degassing may vent 1.1 to 5.7 m³/minute to the atmosphere
 - One Natural Gas STAR Partner reported emissions as high as 2,124 m³/day
- BMPs:
 - Replace wet seals with dry seals
 - Route blowdown vent to the fuel line


Centrifugal Compressor Wet Seals

 High pressure seal oil circulates between rings around the compressor shaft

- Gas absorbs in the oil on the inboard side
 - Little gas leaks through the oil seal
 - Seal oil degassing vents methane to the atmosphere



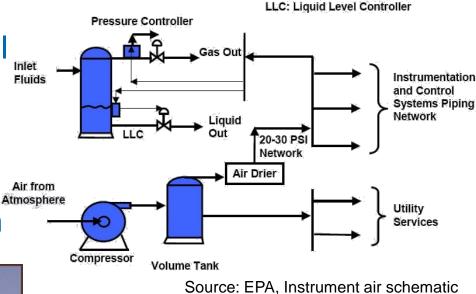
Source: PEMEX

Wet Seals Solution: Dry Seals

- Dry seal springs press stationary ring in seal housing against rotating ring when compressor is not rotating
- At high rotation speed, gas is pumped between seal rings by grooves in rotating ring creating a high pressure barrier to leakage
- Only a very small amount of gas escapes through the gap
- 2 seals are often used in tandem
- Can operate for compressors up to 206 atmospheres (atm) safely

Source: PEMEX

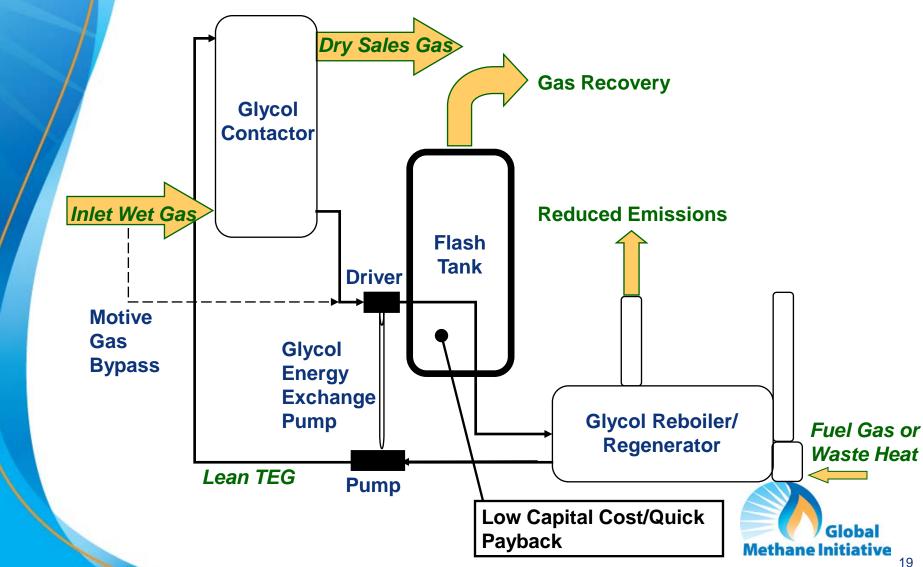
Industry Experience – PEMEX


- PEMEX had 46 compressors with wet seals at a production site
- Converted three to dry seals
 - Cost 444,000 USD/compressor
 - Saves 20,500 Mcf/compressor/year in gas
 - Saves 126,690 USD/compressor/year in gas
- 3.5 year payback from gas savings alone
- Plans for future dry seal installations

Pneumatic Instrument Venting

Problem: Process controllers, chemical pumps, and glycol pumps often vent pressurized natural gas used for

Source: Anadarko, Solar chemical pump


BMPs:

- •Retrofit high-bleed devices to low-bleed
- •Replace natural gas with compressed air
- •Use electric or solar powered pumps Methane Initiative

Dehydrators: Methane Losses

- Produced gas is saturated with water, which must be removed for long distance gas pipelines
- Glycol dehydrators are the most common equipment used to remove water from gas
 - Most use triethylene glycol (TEG)
- Glycol dehydrators emit methane
 - Methane, Non-Methane Hydrocarbons (NMHC), Hazardous Air Pollutants (HAPs), Benzene, Toluene, Ethylbenzene, Xylene (BTEX) from reboiler vent
 - Methane from pneumatic controllers and glycol circulation pumps

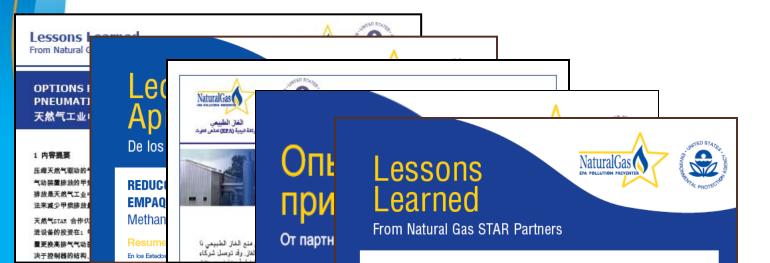
Basic Glycol Dehydrator System Process Diagram

Is Recovery Profitable?

Economic Analysis of Dehydrator Options Based on Natural Gas STAR Partner Experiences

Option	Capital Costs	Annual O&M Costs	Emissions Savings	Payback Period ¹
Optimize Circulation Rate	Negligible	Negligible	11 to 1,100 Mcm/year	Immediate
Install Flash Tank	\$6,500 to \$18,800	Negligible	35 to 305 Mcm/year	4 to 11 months
Install Electric Pump	\$1,400 to \$13,000	\$165 to \$6,500	10 to 1,020 Mcm/year	< 1 month to several years

¹ Based on gas price of \$250/thousand cubic meters (Mcm)


Source: EPA Natural Gas STAR Lessons Learned Document "Optimize Glycol Circulation and Install of Flash Tank Separators in Dehydrators" and "Replacing Gas-Assisted Glycol Pumps with Electric Pumps" (http://www.epa.gov/gasstar/tools/recommended.html)

Contacts and Further Information

- More detail is available on these practices and over 80 others online at: <u>epa.gov/gasstar/tools/recommended.html</u>
- For further assistance, direct questions to:

Scott Bartos EPA Natural Gas STAR Program <u>bartos.scott@epa.gov</u> +1 (202) 343-9167 Don Robinson ICF International <u>drobinson@icfi.com</u> +1 (703) 218-2512

