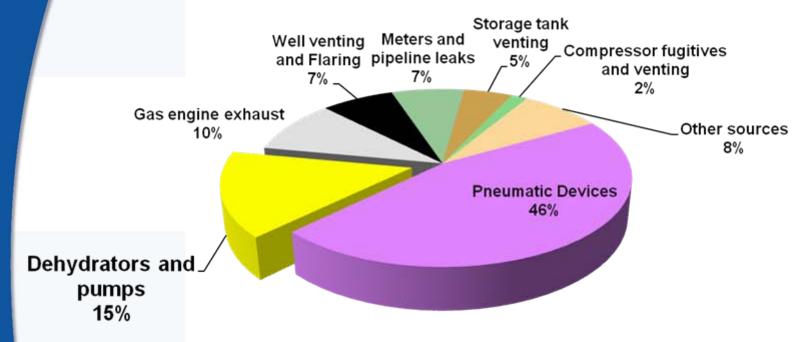


Production/Processing Best Practices: Natural Gas Dehydrator and Pneumatic Controller Optimization for Methane Emission Reductions

Oil & Gas Subcommittee Technology Transfer Workshop

January 28, 2009 Monterrey, Mexico


Natural Gas Dehydration: Agenda

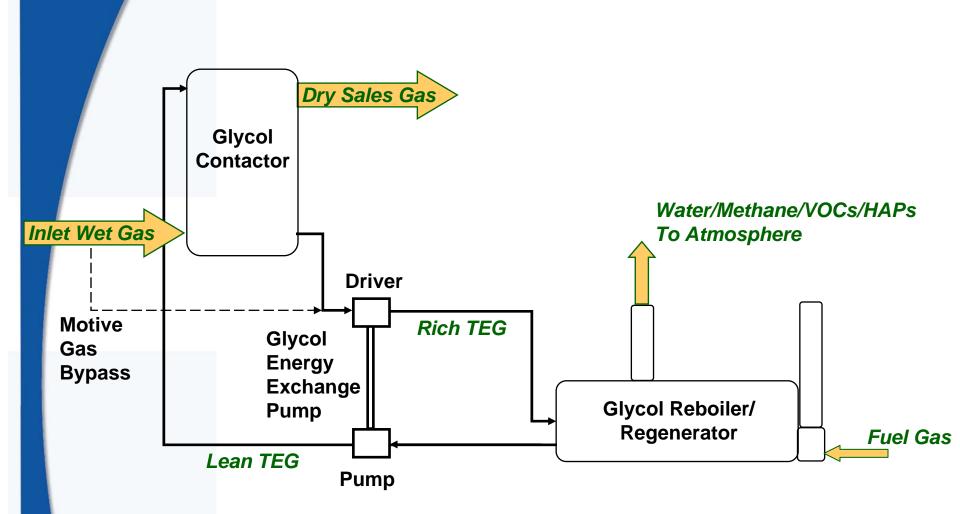
- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion

Methane Losses from Dehydrators

- Dehydrators and pumps account for:
 - 15% of methane emissions in the U.S. production, gathering, and boosting sectors (excl. offshore operations)

EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2005.* April, 2007. Available on the web at: http://yosemite.epa.gov/oar/globalwarming.nsf/content/ResourceCenterPublicationsGHGEmissions.html Natural Gas STAR reductions data shown as published in the inventory.

What is the Problem?

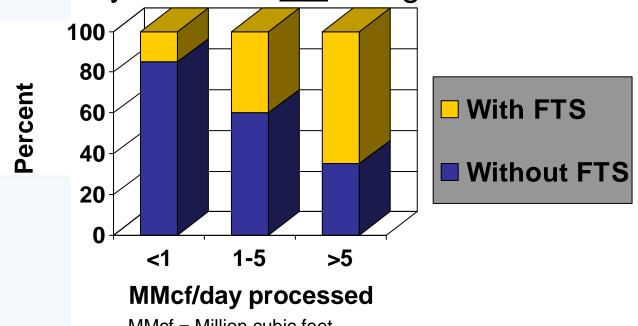

- Produced gas is saturated with water, which must be removed for gas transmission
- Glycol dehydrators are the most common equipment to remove water from gas
 - Most use Triethylene Glycol (TEG)
- Glycol dehydrators generate emissions
 - Methane, Volatile Organic Compounds (VOCs), Hazardous Air Pollutants (HAPs) from reboiler vent
 - Methane from pneumatic controllers

Source: www.prideofthehill.com

Basic Glycol Dehydrator System Process Diagram

Methane Recovery

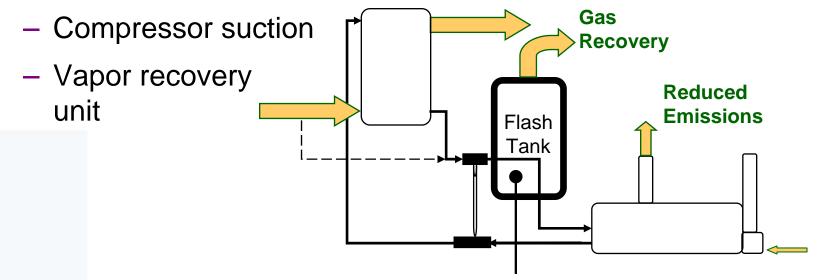
- Optimize glycol circulation rates
- Flash tank separator (FTS) installation
- Electric pump installation
- Zero emission dehydrator
- Replace glycol unit with desiccant dehydrator
- Other opportunities


Optimizing Glycol Circulation Rate

- Gas pressure and flow at wellhead dehydrators generally declines over time
 - Glycol circulation rates are often set at a maximum circulation rate
- Glycol overcirculation results in more methane emissions without significant reduction in gas moisture content
 - Partners found circulation rates two to three times
 higher than necessary
 - Methane emissions are directly proportional to circulation
- Lessons Learned study: optimize circulation rates

Installing Flash Tank Separator (FTS)

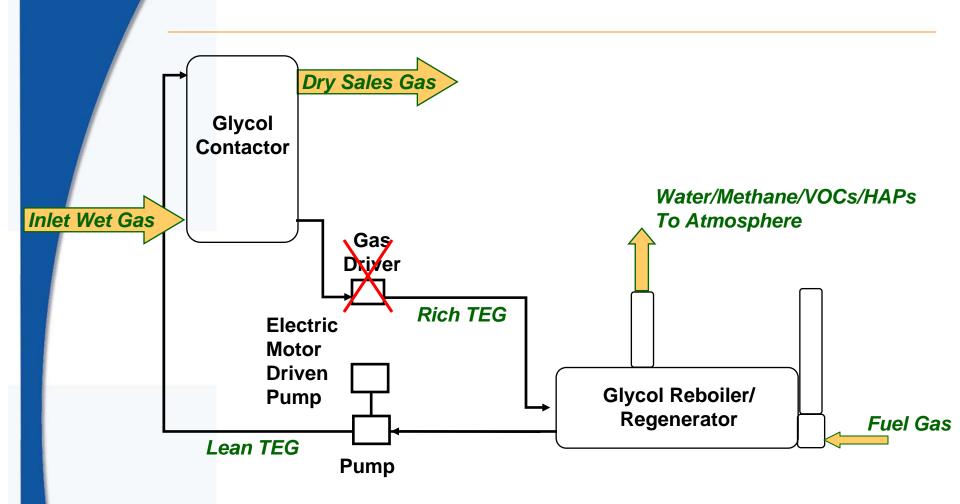
- Methane that flashes from rich glycol in an energy-exchange pump can be captured using an FTS
- Many units are <u>not</u> using an FTS


MMcf = Million cubic feet

Source: API

FTS Methane Recovery

- Recovers about 90% of methane emissions
- Reduces VOCs by 10 to 90%
- Must have an outlet for low pressure gas
 - Fuel



Flash Tank Costs

- U.S. EPA Lessons Learned study provides guidelines for scoping costs, savings and economics
- Capital and installation costs:
 - Capital costs range from \$3,500 to \$7,000 per flash tank
 - Installation costs range from \$1,200 to \$2,500 per
 flash tank
- Negligible Operational & Maintenance (O&M) costs

Electric Pump Eliminates Motive Gas

Is Recovery Profitable?

Three Options for Minimizing Glycol Dehydrator Emissions

Option	Capital Costs	Annual O&M Emissions Costs Savings		Payback Period ¹	
Optimize Circulation Rate	Negligible	Negligible	400 to 40,000 Mcf/year	Immediate	
Install Flash Tank	\$6,500 to \$18,800	Negligible	700 to 10,500 Mcf/year	0.4 to 1.9 years	
Install \$1,400 to \$13,000		\$165 to \$4,300	360 to 36,000 Mcf/year	0.1 to 0.8 years	

^{1 –} Gas price of \$5/Mcf

Overall Benefits

- Financial return on investment through gas savings
- Increased operational efficiency
- Reduced O&M costs (fuel gas, glycol makeup)
- Reduced compliance costs (HAPs, BTEX)
- Similar footprint as gas assist pump

Zero Emission Dehydrator

- Combines many emission saving technologies into one unit
 - Vapors in the still gas coming off of the glycol reboiler are condensed in a heat exchanger
 - Non-condensable skimmer gas is routed back to the reboiler for fuel use
 - Electric driven glycol circulation pumps used instead of energy-exchange pumps

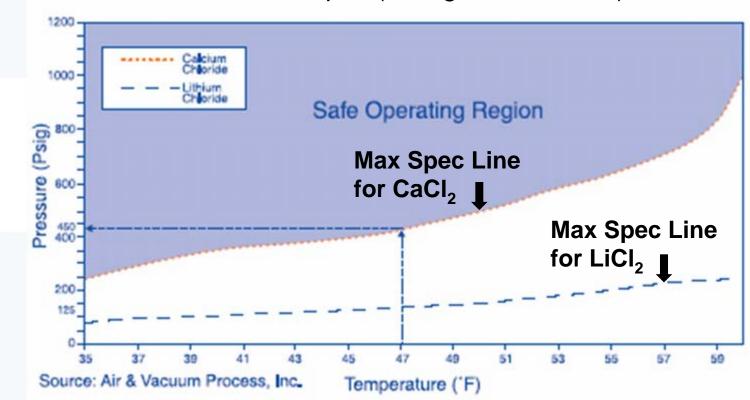
Overall Benefits: Zero Emissions Dehydrator

- Reboiler vent condenser removes heavier hydrocarbons and water from non-condensables (mainly methane)
- The condensed liquid can be further separated into water and valuable gas liquid hydrocarbons
- Non-condensables (mostly methane) can be recovered as fuel or product
- By collecting the reboiler vent gas, methane (and VOC/HAP) emissions are greatly reduced

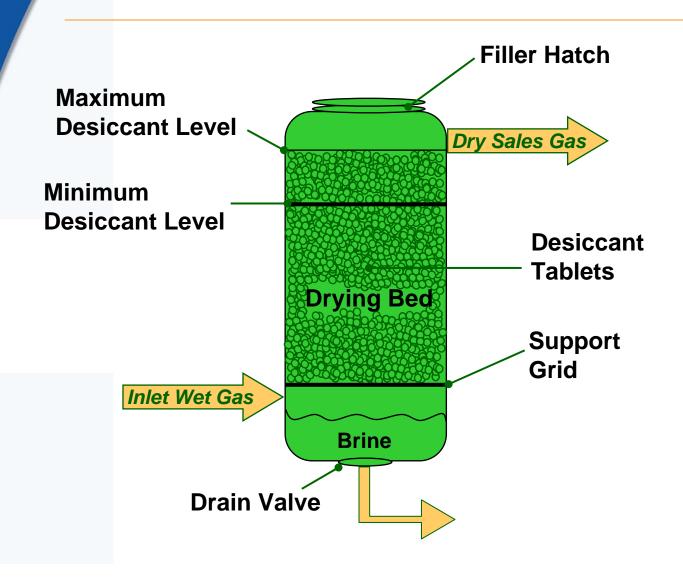
Replace Glycol Unit with Desiccant Dehydrator

- Desiccant Dehydrator
 - Wet gasses pass through drying bed of desiccant tablets
 - Tablets absorb moisture from gas and dissolve
- Moisture removal depends on:
 - Type of desiccant (salt)

Gas temperature and pressure


Source: Van Air

Hygroscopic Salts	Typical T and P for Pipeline Spec	Cost	
Calcium chloride	< 8°C @ 30 atm	Least expensive	
Lithium chloride	< 60°C @ 17 atm	More expensive	


Desiccant Performance

Desiccant Performance Curves at Maximum Pipeline Moisture Spec (3.2 kg water / MMcf)

Desiccant Dehydrator Schematic

Gas Vented from Glycol Dehydrator

Example:

GV = ?

F = 1 MMcf/day

 $W = 10-3.2 \text{ kg H}_2\text{O/MMcf}$

R = 25 L/kg

OC = 150%

 $G = 0.8 \text{ ft}^3/L$

Where:

GV= Gas vented annually (Mcf/year)

F = Gas flow rate (MMcf/day)

 $W = Inlet-outlet H_2O$ content (pounds/MMcf)

R = Glycol/water ratio (rule of thumb)

OC = Percent over-circulation

G = Methane entrainment (rule of thumb)

Calculate:

GV = <u>(F * W * R * OC * G * 365 days/year)</u> 1,000 cf/Mcf

GV = 69 Mcf/year

Glycol Dehydrator Unit Source: GasTech

Desiccant Dehydrator Savings: Gas Vented from Pneumatic Controllers

Example:

GE = ?

PD = 4

EF = 126 Mcf/device/year

Where:

GE = Annual gas emissions (Mcf/year)

PD = Number of pneumatic devices per dehydrator

EF = Emission factor

(Mcf natural gas leakage/

pneumatic devices per year)

Calculate:

GE = EF * PD

GE = 504 Mcf/year

Norriseal
Pneumatic Liquid
Level Controller

Source: norriseal.com

Gas Burned as Fuel for Glycol Dehydrator

- Gas fuel for glycol reboiler
 - 1 MMcf/day dehydrator
 - Removing 6.4 kg water/MMcf
 - Reboiler heat rate:281 Btu/L TEG
 - Heat content of natural gas: 1,027 Btu/scf
- Fuel requirement:17 Mcf/year

- Gas fuel for gas heater
 - 1 MMcf/day dehydrator
 - Heat gas from 8°C to 16°C
 - Specific heat of natural gas: 0.441 Btu/kg-°C
 - Density of natural gas:0.0228 kg/cf
 - Efficiency: 70%
- Fuel requirement: 483 Mcf/year

Gas Lost from Desiccant Dehydrator

Example:

GLD = ?

H = 76.75 inch (1.949 m)

%G = 45%

 $P_1 = 1$ atm

 $P_2 = 31 \text{ atm}$

T = 7 days

Where:

GLD = Desiccant dehydrator gas loss (Mcf/year)

ID = 20 inch (0.508 m) ID = Inside Diameter (feet)

H = Vessel height by vendor specification (feet)

%G = Percentage of gas volume in the vessel

 P_1 = Atmospheric pressure (atm)

 P_2 = Gas pressure (atm)

T = Time between refilling (days)

Calculate:

GLD =
$$\frac{\text{H * ID}^2 * \pi * P_2}{\text{4 * P}_1 * \text{T * 1,000 cf/Mcf}}$$

Natural Gas Savings

Gas vented from glycol dehydrator: 69 Mcf/year

Gas vented from pneumatic controls: +504 Mcf/year

Gas burned in glycol reboiler: + 17 Mcf/year

Gas burned in gas heater: +483 Mcf/year

Minus desiccant dehydrator vent: - 10 Mcf/year

Total savings: 1,063 Mcf/year

Value of gas savings (@ \$5/Mcf): \$5,315/year

Methane to Markets Desiccant Dehydrator and Glycol **Dehydrator Cost Comparison**

Type of Costs and Savings	Desiccant (\$/yr)	Glycol (\$/yr)
Implementation Costs		
Capital Costs		
Desiccant (includes the initial fill)	16,097	
Glycol		24,764
Other costs (installation and engineering)	12,073	18,573
Total Implementation Costs:	28,169	43,337
Annual Operating and Maintenance Costs		
Desiccant		
Cost of desiccant refill (\$1.50/pound)	2,556	
Cost of brine disposal	14	
Labor cost	1,040	
Glycol		
Cost of glycol refill (\$4.50/gallon)		206
Material and labor cost		3,054
Total Annual Operation and Maintenance Costs:	3,610	3,260

Based on 1 MMcf per day natural gas operating at 30 atm and 8°C Installation costs assumed at 75% of the equipment cost

Desiccant Dehydrator Economics

- Payback= 3.3 years
 - Without potential carbon market benefits

Type of Costs						V -
and Savings	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Capital costs (US\$)	-28,169					
Avoided O&M						
costs (US\$)		3,260	3,260	3,260	3,260	3,260
O&M costs -						
Desiccant (US\$)		-3,610	-3,610	-3,610	-3,610	-3,610
Value of gas						
Saved ¹ (US\$)		5,135	5,135	5,135	5,135	5,135
Glycol dehy.						
salvage value ² (US\$)	12,382					
Total (US\$)	-15,787	4,785	4,785	4,785	4,785	4,785

¹ Gas price = US\$5/Mcf

² Salvage value estimated as 50% of glycol dehydrator capital cost

Industry Experiences

- One Partner installed flash tank separators on its glycol dehydrators
 - Recovers 98% of methane from glycol degassing
 - 1,200 to 1,700 Mcf/year reductions per dehydrator
 - US\$5,925 to US\$8,295/year¹ savings per dehydrator
- Another Partner routes gas from flash tank separator to fuel gas system
 - 8.75 MMcf/year reductions per dehydrator
 - US\$43,750/year¹ savings per dehydrator

Lessons Learned

- Optimizing glycol circulation rates increase gas savings, reduce emissions
 - Negligible cost and effort
- FTS reduces methane emissions by about 90 percent
 - Require a low pressure gas outlet
- Electric pumps reduce O&M costs, reduce emissions, increase efficiency
 - Require electrical power source
- Zero emission dehydrator can virtually eliminate emissions
 - Requires electrical power source
- Desiccant dehydrator reduce O&M costs and reduce emissions compared to glycol
- Miscellaneous other PROs can have big savings

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits