# Methane to Markets

#### Landfill Biogas (LFG) Technology Applications

Chad Leatherwood, PE Project Manager SCS Engineers

> *Armenia, Colombia 13 de agosto de 2009*



## Agenda

- LFG Utilization General
- Direct Use Medium BTU
- Direct Use High BTU
- Electricity Production
- Combined Heat and Power



## Why Use Biogas (LFG)?

- Local, available fuel source
- Easy to capture and use
- Source of renewable energy
- Constant supply 24 hours a day, 7 days a week
- Reliable technologies exist for using landfill gas
- Uses a source of energy that otherwise would have been wasted
- Helps the environment by reducing uncontrolled emissions of landfill gas



## Modern Municipal Solid Waste Landfill





## **LFGE Project Benefits**

- Destroys methane and other organic compounds in LFG
- Offsets use of nonrenewable resources
- Potential benefits for the landfill;
  - Another source of income
  - Local
- Potential benefits for the End User
  - Reduces fuel costs
  - Win through the use of renewable sources
  - Supports the strategy of being a "green" and/or sustainable company



## **LFGE Project Benefits**

- Each 1 MW of generation capacity o direct use of 615 m3/h is equivalent to:
  - Annual environmental equivalent to planting 4,900 hectare of trees or removing the CO2 emissions of 9,000 cars
  - Annual energy equivalent to preventing the use of 99,000 barrels of oil, offsetting the use of 200 railcars of coal, or powering more than 650 homes



# Landfill Gas has been used to help produce...?

- Flowers and tomatoes
- Pottery and glass
- Cars and trucks
- Pharmaceuticals
- Bricks and concrete
- Steel
- Orange and apple juice
- Biodiesel, LNG and ethanol
- Consumer goods and containers
- Fiberglass, nylon and paper
- Denim

- Electronics
  - Chemicals
- Chocolate
- Dried wastewater sludge
- Soy-based products
- Carpet
- Infrared heat
- Green power
- Cost savings
- Increased sustainability



## **Landfill Gas Utilization Options**

- Medium BTU fuel. Used directly or with little treatment for commercial, institutional, and industrial use to supply water heaters, furnaces, aggregate dryers and conventional power generators. Typically contains 50% methane.
  - Leachate Evaporation. Landfill gas is used as fuel for the evaporation of leachate, thus reducing treatment costs.
- High BTU Fuel. Landfill gas is purified to levels of 92 to 99 percent methane by removing the carbon dioxide. End-use is Natural Gas or Compressed Natural Gas.
- Electricity. Landfill gas is used as fuel for internal combustion engines and turbines for the generation of energy to be send to the grid.



## Landfill Gas 101 (Project Type)

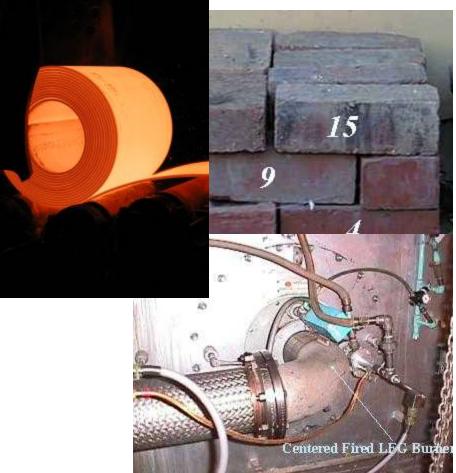
# "Sanitary Landfill" "Energy Delivery" "End-User" (MBTU)

- Require high capital investments
- Requires at least 95% methane to sell to the Natural Gas company.

- Requires interconnection to the local electric grid.
- In the long term, it is economically dependent on the price of kWh






## **Landfill Gas Utilization**

## Direct Use: Medium BTU Fuel



## **Direct Gas Utilization**

- Boilers
- Direct thermal applications
  - Kilns
  - furnaces
- Innovative applications
  - Greenhouses
  - Infrared heaters
  - Pottery kilns
  - Leachate evaporation





## **Direct Gas Utilization**

- More than 100 projects in the US
- Pipeline length range from 0.6 to 15 kilometers
  - less than 10 kilometers is most feasible
- Gas used at off-site end user
- Gas piped to a nearby customer for use in boiler, kiln or other process



#### Three Rivers Solid Waste Authority Kimberly Clark/Siemens - Aiken, South Carolina

#### Compression and Dehydration Plant

- 3390 M<sup>3</sup>/hr Flow
- 25.6 km
- Compression to 40 lb/pulg<sup>2</sup>
- Remote communications
- integration with the automated burner
- Compliance with specific design standards

#### **Capital Costs**

• ~\$2.0 Million Dollars

#### <u>Terms</u>

Design and Installation : 8
 months





## Jenkins Brick Moody, Alabama

- 11 km pipeline
- Start-up in 2006
- Landfill supplies 1015 m3/hr to the brick kilns
  - Equivalent to 18 mmBtu/hr
- LFG is 45% of plants energy needs
- Benefits
  - Savings of more than \$600,000 in seven years
  - Good public relations
  - Local economic development.







## SOLAE - South Shelby Landfill Memphis, Tennessee

- Biggest renewable energy project in Tennessee.
- Capacity 8.475 m<sup>3</sup>/hra.
- Constructed in 150 days.
- Combustion system was modified and the automated systems were integrated to optimize landfill gas use
- Design and construction of the flares and of the automated systems.
- Reduction of more than 65% of the emissions of NG
- 5 mile pipeline
- Reduction of NOx emissions greater than 75%



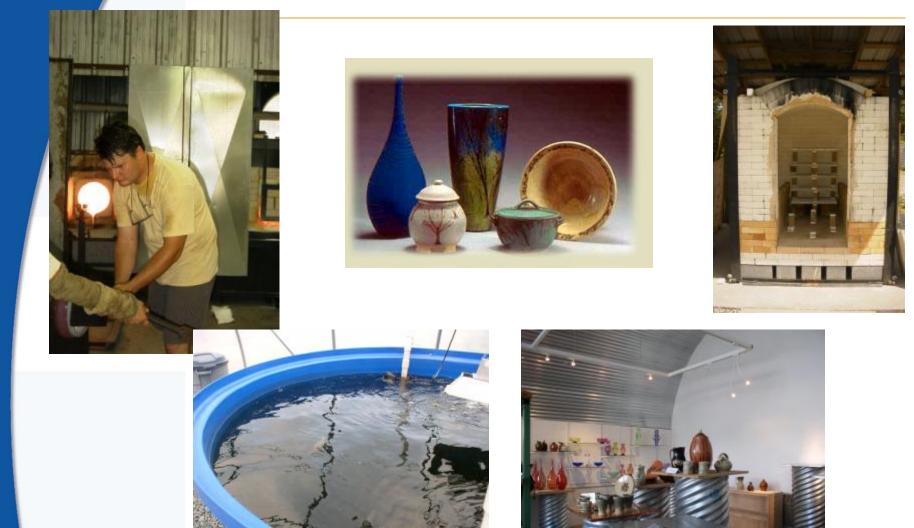


## Landfill Gas Retrofit Ocean Spray Corporation

- Systems design and integration to take the landfill gas to two new boilers
- Controls designed to operate without personnel
- Optimized to use the fuel with the least operational cost
- Remote monitoring and diagnostic system






## Greenhouses

- Use both electricity and heat.
- Carbon dioxide can be used to grow greenhouse plants.
- 6 operational greenhouse projects in the U.S.





## **Energy Center**





## **Leachate Evaporation**

- Utilize LFG to treat leachate
- Commercially available technology
- Units operating in the U.S. and internationally; 20 operational in the U.S.





## **Landfill gas Utilization**

## Direct Use: High BTU Fuel



## High-Btu Upgrade

#### Technology

- Gas is purified from 50% to 97- 99% methane
- Removal of carbon dioxide is primary step

#### Advantages

- Inject treated product into pipeline
- Methane can be used as raw material
- Reduction in use of fossil fuels

#### Disadvantages

- Must meet strict standards of pipeline
- Costly technology
- Economical for large scale only





## High BTU Fuel – Montauk Energy -Valley & Monroeville, PA

- Started operations in 2006.
- Landfill gas to high btu, pipeline quality (two plants)
  - Membrane technology
- Landfill gas delivered to:
  - Low pressure pipeline for local distribution
  - High pressure to national level pipeline



Photos courtesy of Montauk Energy





## **LFG for Vehicle Fuel**

- Compressed natural gas (CNG) to fuel landfill equipment and fleet vehicles
- CNG to fuel buses
- Diesel from LFG
- Methanol to biodiesel
- Ethanol production









## **LFG** Utilization



- Most prevalent type of project in the US
  - In US, 1100 MW of capacity from over 250 operational projects
- Sale of Electricity to
  - Utility
  - Cooperative or industries enabled to buy directly
  - Nearby large customer
  - Auto generation or net metering
- Average project size: 4 MW (500 kW 50 MW)



- Internal Combustion Engines
- Turbines
- Microturbines
- New technologies
   Fuel Cell



## **Internal Combustion Engine**

- Sizing: 350 kW 3 MWs
- Advantages
  - Proven and reliable
  - Efficient
  - High availability > 92%
  - Do not require LFG pretreatment
- Disadvantages
  - High O&M costs
  - High NOx and CO emissions





## **Turbines: Gas, Steam, and Combined Cycle**

- Sizing: 1-6 MWs
- Advantages
  - Corrosion resistant
  - Low O&M costs
  - Small physical size
  - Lower NOx emissions
- Disadvantages
  - Inefficient at partial load
  - High parasitic loads, due to high gas compression requirements
  - Require LFG pretreatment







## **Microturbines**

- Sizing: 30-200 kW
- Advantages
  - Low emissions
  - Multiple fuel capability
  - Light weight/small size
  - Fuel pretreatment not required
  - Lower maintenance costs
- Disadvantages
  - Inefficient
  - High installed capital cost \$/kW







## **LFG** Utilization

## **Combined Heat and Power**



## **Combined Heat and Power**

## Large Industrial

Microturbine Applications



## **Combined Heat and Power**

#### Advantages

- Greater overall energy recovery efficiency from waste heat recovery - up to 80%
- Specialized CHP systems available
- Flexible hot water or steam generation from recovered heat

#### Disadvantages

Higher capital costs for the recovery systems



## Internal Combustion Generation Greenhouses – Model City, NY

- Developed by Innovative Energy Systems (IES)
- Online June 1, 2001
- 5.6 MW capacity from 7 Caterpillar G3516 enginegenerator sets
- Provides all electrical and heating requirements of H<sub>2</sub>Gro
  Greenhouses
- Excess electricity sold to grid
- 7½ acres and produces 10,000 lb/day or 3.5 million lb/yr of tomatoes







## CHP BMW – South Carolina

- 15 km pipeline
- 4 gas turbines retrofitted to burn LFG
- 4.8 MW = 25% energy needs of the plant
- 72 MMBtu/hr = 80% thermal needs of the plant (hot water, heat, cooling)
- BMW saves at least \$1 million/yr







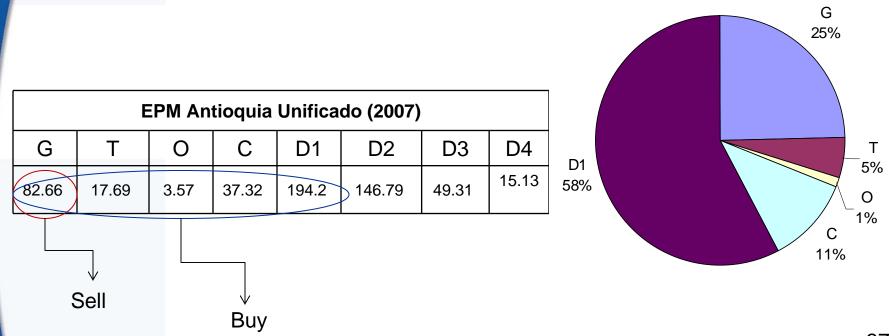
## Combined Heat and Power Antioch, Illinois

First school

co-generation (CHP) project on LFG

- 12 microturbines with 360 kW capacity
- Exhaust energy produces 306,000 kJ/hour of hot water
- School expects to save \$100,000/year






## **Colombian Electricity Tariffs**

#### Simple Tariff Level 1

Industrial I = 339.6055 \$/Kwh January 2, 2009 Codensa (CREG)

Industrial I = 325.69 December 15, 2008 EPM (CREG)





## Auto-generation and Cogeneration

- Autogeneration Resolution CREG O84 DE 1996
- Cogeneration Resolution CREG 085 of 1996 modified and CREG-107 de 1998, CREG-032, Y CREG-039 de 2001
- Allows project developer to take advantage of distribution price to offset on-site load
- Does not need to be co-located; can generate on landfill and run a dedicated electricity line or a LFG pipeline and generate at end user
- Difficult to make a electricity project that merely exports to the gird at current wholesale pricing



## **Direct Utilization of LFG**

- Many times, most economically viable LFG utilization option
- End user must be located nearby (up to ~10 km), depending on LFG pipeline route complexity
- Can sell the LFG with discount off of natural gas distribution tariffs
- Key Point Projects cannot work if Regulators require that LFG direct pipelines meet same regulations as NG pipelines



## **Renewable Energy**

- Law 697 de 2001 Requires the Ministry of Energy and Mines develops a program to use renewable sources of energy
- Law 788 de 2002- Exemption of Taxes for 15 years with two conditions:
  - CDM Project
  - 50% of revenues are reinvested in social projects.
- Decree 2532 of 2001 Exemption of sale taxes for equipment use on clean power generation
- No additional incentive tariff for renewables





### Chad Leatherwood, PE <u>cleatherwood@scsengineers.com</u>