

Methane Emissions Reductions through Vapor Recovery from Oil and Condensate Storage and Holding Tanks

Methane to Markets Partnership Expo

March 4, 2010, New Delhi, India

Larry Richards, President Hy-Bon Engineering Company

Vapor Recovery: Agenda

- Methane Losses
- Methane Savings
- Is Recovery Profitable?
- Industry Experience
- Lessons Learned
- Discussion

Storage Tank Methane Losses

- A storage tank battery can vent 140 m³ to 2,720 thousand m³ (Mcm) of natural gas and light hydrocarbon vapors to the atmosphere each year
 - Vapor losses are primarily a function of oil throughput, gravity, and gas-oil separator pressure
- Flash losses
 - Occur when crude is transferred from a gas-oil separator at higher pressure to a storage tank at atmospheric pressure
- Working losses
 - Occur when crude levels change and when crude in tank is agitated
- Standing losses
 - Occur with daily and seasonal temperature and barometric pressure changes

Methane Savings: Vapor Recovery

- Vapor recovery can capture up to 95% of hydrocarbon vapors from tanks
- Recovered vapors have higher heat content than pipeline quality natural gas
- Recovered vapors are more valuable than natural gas and have multiple uses
 - Re-inject into sales pipeline
 - Use as on-site fuel
 - Send to processing plants for recovering valuable natural gas liquids

Types of Vapor Recovery Units

- Conventional vapor recovery units (VRUs)
 - Use special designed packages configured to capture low pressure, wet gas streams with no oxygen ingress
 - Use rotary screw or rotary vane compressor for wet gas
 - Scroll compressors are new to this market & work well
 - Require electrical power or engine driver
- Venturi ejector vapor recovery units (EVRU™) or Vapor Jet
 - Use Venturi jet ejectors in place of rotary compressors
 - Contain no moving parts
 - EVRUTM requires a source of high pressure motive gas and intermediate pressure discharge system
 - Vapor Jet requires a high pressure motive water

Conventional Vapor Recovery Unit

Vapor Recovery Installations

Source: Hy-Bon Engineering

Criteria for Vapor Recovery Unit Locations

- Steady source and sufficient quantity of losses
 - Crude oil stock tank
 - Flash tank, heater/treater, water skimmer vents
 - Gas pneumatic controllers and pumps
- Outlet for recovered gas
 - Access to low pressure gas pipeline, compressor suction, or on-site fuel system

Dual VRU bound for Venezuela - one of 17 units capturing gas currently for Petroleos de Venezuela. Flooded screw compressor for volumes to 0.14 million m³ per day; up to 15 atm.

Source: Petroleos de Venezuela S.A

Quantify Volume of Losses

- Estimate losses from chart based on oil characteristics, pressure, and temperature at each location (± 50%)
- Estimate emissions using the E&P Tank Model (± 20%)
- Engineering Equations –
- Vasquez Beggs (± 20%)
- Measure losses using recording manometer and well tester or ultrasonic meter over several cycles (± 5%)
 - This is the best approach for facility design

Petroleos de Venezuela S.A has installed vapor recovery in the majority of its production facilities in Eastern Venezuela.

Source: Petroleos de Venezuela S.A

What is the Recovered Gas Natural Gas Worth?

- Value depends on heat content of gas
- Value depends on how gas is used
 - On-site fuel
 - Valued in terms of fuel that is replaced
 - Natural gas pipeline
 - Measured by the higher price for rich (higher heat content) gas
 - Gas processing plant
 - Measured by value of natural gas liquids and methane, which can be separated
- Gross revenue per year = (Q x P x 365) + NGL
 - Q = Rate of vapor recovery (m³ per day)
 - P = Price of natural gas
 - NGL = Value of natural gas liquids

Value of Natural Gas Liquids

Recovered Btu-rich tank vapors worth approximately \$207/Mcm (\$5.87/Mcf)

	1 Btu/gallon	2 MMBtu/ gallon	3 \$/gallon	4 \$/MMBtu ^{1,2} (= 3/2)	5 Btu/cf	6 MMBtu/Mcf	7 \$/Mcf (= 4*6)
Methane	59,755	0.06	0.18	2.96	1,012	1.01	\$3.00
Ethane	74,010	0.07	0.37	5.00	1,773	1.77	\$8.86
Propane	91,740	0.09	0.68	7.41	2,524	2.52	\$18.71
n Butane	103,787	0.10	0.86	8.29	3,271	3.27	\$27.10
iso Butane	100,176	0.10	0.91	9.08	3,261	3.26	\$29.62
Pentanes+*	105,000	0.11	1.01	9.62	4,380	4.38	\$42.13

	8 \$/MMBtu	9 Vapor Composition	10 Mixture (MMBtu/Mcf)	11 Value (\$/Mcf) (= 8*10)
Methane	2.96	82%	0.83	\$2.46
Ethane	5.00	8%	0.14	\$0.71
Propane	7.41	4%	0.10	\$0.75
n Butane	8.29	3%	0.10	\$0.81
iso Butane	9.08	1%	0.03	\$0.30
Pentanes+	9.62	2%	0.09	\$0.84
Total			1.29	\$5.87

^{1 -} Natural Gas Price assumed at \$106/Mcm (\$3/Mcf)

^{2 –} Prices of Individual NGL components are from Platts Oilgram for Mont Belvieu, TX February 17, 2009

Is Recovery Profitable?

 Economics of installing vapor recovery units are attractive, particularly for larger units

Financial Analysis for a conventional VRU project ¹								
Capacity		Installation and Capital Costs ²	Operating and Maintenance	Value of Gas ³	Payback	Internal Rate of Return		
(m³/day)	(Mcf/day)	(\$)	(\$/year)	(\$/year)	(Months)	(%)		
700	25	35,738	7,367	25,000	25	40		
1,400	50	46,073	8,419	50,000	14	86		
2,800	100	55,524	10,103	101,000	8	162		
5,700	200	74,425	11,787	205,000	5	259		
14,200	500	103,959	16,839	510,000	3	474		

- 1 All costs and revenues are represented in U.S. economics
- 2 Unit cost plus estimated installation at 75% of unit cost
- 3 \$207/Mcm x 1/2 capacity x 365 x 95%

Mcf = thousand cubic feet

Industry Experience: Anadarko

- Vapor Recover Tower (VRT)
 - Add separation vessel between heater treater or low pressure separator and storage tanks that operates at or near atmospheric pressure
 - Operating pressure range: 0.07 atm to 0.34 atm
 - Compressor (VRU) is used to capture gas from VRT
 - Oil/condensate gravity flows from VRT to storage tanks
 - VRT insulates the VRU from gas surges with stock tank level changes
 - VRT more tolerant to higher and lower pressures
 - Stable pressure allows better operating factor for VRU

Industry Experience: Anadarko

- VRT reduces pressure drop from approximately 4.4 atm to 1.1 to 1.3 atm
 - Insulates the VRU from crude tank oil movements
 - Captures more product for sales
 - Anadarko netted between \$7 to \$8 million from 1993 to 1999 by utilizing VRT/VRU configuration
- Equipment Capital Cost: \$11,000
- Standard size VRTs available based on oil production rate
 - 51 by 10.7 meters
 - 10.7 by 1.2 meters
- Anadarko has installed over 300 VRT/VRUs since 1993 in the U.S. and continues on an as needed basis

VRT/VRU Photos

Source: Anadarko

VRT/VRU Photos

Source: Anadarko

Lessons Learned

- Vapor recovery can yield generous returns when there are market outlets for recovered gas
 - Recovered high heat content gas has extra value
 - Vapor recovery technology can be highly costeffective in most general applications
- Venturi jet models work well in certain niche applications, with reduced operating and maintenance costs

Lessons Learned (continued)

- VRU should be sized for maximum volume expected from storage tanks (rule-of-thumb is to double daily average volume)
- Rotary vane, screw or scroll type compressors recommended for VRUs where Venturi ejector jet designs are not applicable
- EVRUTM recommended where there is a high pressure gas compressor with excess capacity
- Vapor Jet recommended where there is produced water, less than 2.1 Mcm per day gas and discharge pressures below 3.7 atm

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits

Contact Information

Larry Richards
President
Hy-Bon Engineering Company
Irichards@hy-bon.com
+1 (432) 697-2292

www.methanetomarkets.org

http://www.epa.gov/gasstar/